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ABSTRACT 

Space-borne remote sensing datasets have the potential to allow us to progress 

towards global scale flood prediction systems.  However, these datasets are limited in 

terms of space-time resolution and accuracy, and the best use of such data requires 

understanding how uncertainties propagate through hydrological models.  An unbiased 

investigation of different datasets for hydrological modeling requires a parsimonious 

calibration-free model, since calibration masks uncertainties in the data and model 

structure.  This study, which addresses these issues, consists of two parts: 1) the 

development and validation of a multi-scale distributed hydrological model whose 

parameters can be directly linked to physical properties of the watershed, thereby 

avoiding the need of calibration, and 2) application of the model to demonstrate how data 

uncertainties propagate through the model and affect flood simulation across scales.   

I based the model development on an interactive approach for model building. I 

systematically added processes and evaluated their effects on flood prediction across 

multiple scales.  To avoid the need for parameter calibration, the level of complexity in 

representing physical processes was limited by data availability.  I applied the model to 

simulate flows for the Cedar River, Iowa River and Turkey River basins, located in Iowa.  

I chose this region because it is rich in high quality hydrological information that can be 

used to validate the model.  Moreover, the area is frequently flooded and was the center 

of an extreme flood event during the summer of 2008.  I demonstrated the model’s skills 

by simulating medium to high-flow conditions; however the model’s performance is 

relatively poor for dry (low flow) conditions.  Poor model performance during low flows 
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is attributed to highly nonlinear dynamics of soil and evapotranspiration not incorporated 

in the model.     

I applied the hydrological model to investigate the predictability skills of satellite-

based datasets and to investigate the model’s sensibility to certain hydro-meteorological 

variables such as initial soil moisture and bias in evapotranspiration.  River network 

structure and rainfall are the main components shaping floods, and both variables are 

monitored from space.  I evaluated different DEM sources and resolution DEMs as well 

as the effect of pruning small order channels to systematically decreasing drainage 

density.  Results showed that pruning the network has a greater effect on simulated peak 

flow than the DEM resolution or source, which reveals the importance of correctly 

representing the river network.  Errors on flood prediction depend on basin scale and 

rainfall intensity and decrease as the basin scale and rainfall intensity increases.  In the 

case of precipitation, I showed that simulated peak flow uncertainties caused by random 

errors, correlated or not in space, and by coarse space-time data resolution are scale-

dependent and that errors in hydrographs decrease as basin scale increases.  This feature 

is significant because it reveals that there is a scale for which less accurate information 

can still be used to predict floods.  However, the analyses of the real datasets reveal the 

existence of other types of error, such as major overall bias in total volumes and the 

failure to detect significant rainfall events that are critical for flood prediction. 
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ABSTRACT 

Space-borne remote sensing datasets have the potential to allow us to progress 

towards global scale flood prediction systems.  However, these datasets are limited in 

terms of space-time resolution and accuracy, and the best use of such data requires 

understanding how uncertainties propagate through hydrological models.  An unbiased 

investigation of different datasets for hydrological modeling requires a parsimonious 

calibration-free model, since calibration masks uncertainties in the data and model 

structure.  This study, which addresses these issues, consists of two parts: 1) the 

development and validation of a multi-scale distributed hydrological model whose 

parameters can be directly linked to physical properties of the watershed, thereby 

avoiding the need of calibration, and 2) application of the model to demonstrate how data 

uncertainties propagate through the model and affect flood simulation across scales.   

I based the model development on an interactive approach for model building. I 

systematically added processes and evaluated their effects on flood prediction across 

multiple scales.  To avoid the need for parameter calibration, the level of complexity in 

representing physical processes was limited by data availability.  I applied the model to 

simulate flows for the Cedar River, Iowa River and Turkey River basins, located in Iowa.  

I chose this region because it is rich in high quality hydrological information that can be 

used to validate the model.  Moreover, the area is frequently flooded and was the center 

of an extreme flood event during the summer of 2008.  I demonstrated the model’s skills 

by simulating medium to high-flow conditions; however the model’s performance is 

relatively poor for dry (low flow) conditions.  Poor model performance during low flows 
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is attributed to highly nonlinear dynamics of soil and evapotranspiration not incorporated 

in the model.     

I applied the hydrological model to investigate the predictability skills of satellite-

based datasets and to investigate the model’s sensibility to certain hydro-meteorological 

variables such as initial soil moisture and bias in evapotranspiration.  River network 

structure and rainfall are the main components shaping floods, and both variables are 

monitored from space.  I evaluated different DEM sources and resolution DEMs as well 

as the effect of pruning small order channels to systematically decreasing drainage 

density.  Results showed that pruning the network has a greater effect on simulated peak 

flow than the DEM resolution or source, which reveals the importance of correctly 

representing the river network.  Errors on flood prediction depend on basin scale and 

rainfall intensity and decrease as the basin scale and rainfall intensity increases.  In the 

case of precipitation, I showed that simulated peak flow uncertainties caused by random 

errors, correlated or not in space, and by coarse space-time data resolution are scale-

dependent and that errors in hydrographs decrease as basin scale increases.  This feature 

is significant because it reveals that there is a scale for which less accurate information 

can still be used to predict floods.  However, the analyses of the real datasets reveal the 

existence of other types of error, such as major overall bias in total volumes and the 

failure to detect significant rainfall events that are critical for flood prediction. 
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CHAPTER I  

INTRODUCTION 

Motivation 

For centuries, floods have been one of the most destructive global natural 

disasters.  The impacts of floods are expected to increase in the coming years due to 

population growth, population migration to coastal areas, and climate change (Feyen et 

al., 2006).  Complete protection is both unfeasible and unsustainable because of high 

costs and intrinsic uncertainty (Schanze, 2006).  In this context, more accurate flood 

prediction would greatly enhance the effectiveness of flood mitigation measures.  The 

development of near-global flood forecasting systems has been cited as one of the major 

challenges the hydrological community faces (Lettenmaier and De Roo, 2006; Wood et 

al., 2011).  Reliable flood prediction is a difficult scientific challenge, especially for 

ungauged or poorly gauged basins and scenarios involving rapid land cover and climate 

change. 

Floods are controlled by storm properties, soil and surface physical properties, 

and initial wetness conditions, all of which are to some degree monitored by remote 

sensing.  Remote sensing provides key information for simulating floods due to its low 

cost, near global coverage, robustness during extreme events, and continuous spatial and 

temporal sampling.  These features make it possible to predict floods globally, including 

in data-sparse regions.  However, the best use of such data requires the development of 

appropriate modeling techniques that are specially designed to use available information 

most effectively.  This process considers the limitations imposed by the inherent features 

of these products, such as retrieval error, infrequent sampling, and low spatial resolution.  

The use of remote sensing information for hydrological prediction requires a better 

understanding of how these uncertainties propagate through hydrological models.   
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One of the major barriers to the implementation of global flood prediction 

systems is the reliance of traditional hydrological methods on calibration.  Calibration is 

usually performed based on the optimal match between observed and simulated stream 

flow at a specific spatial scale.  However, historical datasets are lacking in many parts of 

the world.  Moreover, since calibration camouflages problems related to the model’s 

structure and/or data uncertainty, it eliminates the opportunity to learn from incorrect 

predictions (Sivapalan et al., 2003; Kavetski and Fenicia, 2011).  As argued by Kirchner 

(2006), scientific knowledge should be achieved by the “collision of theory and data, 

rather than through increasingly elaborate and parameter-rich models that may succeed as 

mathematical marionettes, dancing to match the calibration data.”  

A third limitation of calibration is the focus on the few points in the basin for 

which data is available, normally in the basin outlet.  This procedure guarantees a good 

match between observed and simulated data, but it does not assure that model performs 

equally well for other sites or other scales.  Even when good agreement is achieved, 

calibrated models do not provide an unbiased framework from which to evaluate different 

datasets and understand the effects of data errors on flood prediction.   

To avoid the aforementioned issues related to calibration, I first developed a fully 

distributed, physically-based, and calibration-free hydrological model.  Instead of 

calibrating parameters, I adopted a systematic and interactive approach to model 

building.  I systematically added processes to the model and evaluated their effects on 

flood prediction across multiple scales.  The level of complexity adopted to represent 

physical processes was limited by data availability since I attempted to avoid parameters 

that require calibration.  I demonstrate the model’s capability to correctly represent the 

hydrologic response to heavy rainfall using high resolution and accuracy datasets, e.g. 

rainfall and digital elevation models.  Since estimated parameters were not adjusted based 

on the high resolution datasets, the model provides an unbiased tool to evaluate lower 

resolution and less accurate datasets (especially ones that are remotely sensed) and 



www.manaraa.com

 

 

3 

investigates how data uncertainty affects floods.  It is important to point out that since 

model parameters were not best-fit to a particular scale or location, the model is equally 

able to predict floods everywhere, in the spirit of the PUB initiative (Sivapalan et al., 

2003). 

In the next section, I present the main objectives and research questions that 

guided this work.  Next I present a brief review of the literature including two main 

topics: (1) state-of-the-art hydrological modeling and (2) applications of remote sensing 

for flood prediction.  Section 1.4 describes the study area chosen to test our modeling 

framework.  Section 1.5 outlines the general methodology followed in this thesis.  The 

last section presents a brief overview of the thesis chapters.  

Objectives and research questions 

The broad motives of this study are to contribute to the evaluation of the value of 

remote sensing data for flood prediction across multiple scales and to provide a rational 

basis for future data requirements.  Floods are the result of the complex interaction of 

meteorological processes, land surface and soil properties, and antecedent moisture 

conditions.  On one side, remote sensing information provides insights about all of the 

variables that should be accounted for in a flood prediction system, with near global 

coverage and relatively low costs.  On the other, coarse spatial and temporal resolution, 

sampling frequency, and retrieval errors limit its applicability for flood prediction at 

small scales.  Our main hypothesis is that uncertainties in flood simulation due to data 

limitations (accuracy or resolution) decrease as basin scale increases.  Therefore, there is 

a scale for which remote sensing information can be used to predict floods with an 

acceptable level of accuracy.  The specific goal of this work is to  estimate this scale as 

closely as possible. 

In order to achieve this goal, I need to assess the usefulness of different remotely 

sensed datasets for flood prediction.  The unbiased evaluation of different datasets 
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requires a calibration-free, multi-scale framework.  Therefore, in this work, I first develop 

such a framework, taking into consideration currently available remote sensing data 

relevant to flood prediction.  Once I demonstrate the flood prediction skills of the 

developed framework, I apply it to the following research questions: 

1. How do uncertainties in the input data or in the data used to estimate model 

parameters (digital elevation model, land cover) affect flood prediction? 

2. How do errors change with basin scale?  

3. What are the errors and limitations involved in using satellite remote-sensed data 

for flood prediction? 

4. What are the main features of remote sensing information that should be 

improved or modified in order to yield accurate global flood prediction systems? 

Literature Review:  

Progress towards a global scale flood prediction system 

In this section, I present a brief literature review of the subjects that motivated the 

development of this thesis.  I start with a brief discussion about the current state of 

hydrological modeling, focusing on the main challenge of predicting floods everywhere.  

In the subsequent section, I list the main datasets available to predict floods.  I also 

include a list of current and future satellite remote sensing missions that measure relevant 

variables for monitoring and predicting floods.  

State-of-the-art hydrological modeling  

The development of hydrological models started in the 60s and was enhanced by 

the advance of high-speed computers and by the demand imposed by advanced water 

management engineering projects.  Due to computer limitations and lack of spatial 

information, lumped models were initially applied.  Spatial variability of the 

characterization of the landscape, hydro-meteorological forcings, or initial conditions 

were not explicitly accounted for in this type of formulation.  To overcome these 
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weaknesses, effective parameters were calibrated based on the hydrograph at the outlet of 

the basin.  Parameter calibration guaranteed good fit and a correct overall mass balance 

but did not guarantee the correct representation of physical processes, especially across 

scales.  A well-known example of a lumped model is The Sacramento Soil Moisture 

Accounting Model (Burnash et al, 1973), which is the main model used for river 

forecasting by the National Weather Service River Forecast Centers across the United 

States.  

During this first phase of the hydrological model development, calibration was 

justified by the lack of spatial/temporal information describing catchments’ physical 

properties (e.g. land cover, soils types, landscape) and hydro-meteorological (e.g. 

precipitation, evapotranspiration) and state (e.g. soil moisture) variables.  At that point, 

appropriate data were not available to test the basic hypothesis adopted to build the 

models.  Calibration was used to fit estimated to observed data under the assumption that 

the model structure and data uncertainty were much smaller problems than the scarcity of 

data.  When data is sparse, calibration is an acceptable procedure, especially when the 

model is used for operational predictions rather than being used in a scientific context.   

With the advances in Geographical Information System (GIS), increasing 

computer resources and availability of spatially distributed data through remote sensing 

technologies, models that explicitly account for spatial heterogeneities began to be 

conceptualized.  With hydrological distributed models, a new challenge emerged, 

“dynamic parametric complexity” (Gupta, 2004).  With explicit consideration of spatial 

variability, the number of parameters increased exponentially since one set of parameters 

has to be specified for each model control volume.  A large number of observations that 

covers all spectrums of hydrological functions and spatio-temporal scales would be 

required to correctly estimate these parameters through calibration (Sawicz et al., 2011).  

Even in that case, we would have to guarantee that the data are error free.  When 

streamflow at the outlet of the basin is the only information used to calibrate these 
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models, the large number of degrees of freedom results in equifinality, i.e. a limited 

ability to uniquely identify parameters (Ebel and Loague, 2006).  If parameter calibration 

is based on a dataset with a limited number of observations (hydrographs at the outlet of 

the basin), then we can never be sure if the model is “right for the right reasons” or if 

errors in the data and model structure are being compensated for by errors in parameter 

values (Refsgaard, 2004; Ajami et al., 2007).  

Lack of scaling consideration is another common issue in traditional hydrological 

models.  Hydrological processes are highly nonlinear, heterogeneous in space and time, 

and cannot be extrapolated across scales (Wood et al., 1988; Sivapalan and Kalma, 1995; 

Blöschl, 2001; Sivapalan et al., 2004).  However, due to the lack of understanding of the 

scaling properties of hydrological processes, they are commonly assumed to be scale 

invariant, and the same equations are applied to represent physical processes at a large 

range of scales (Beven, 1995).  In this case, “effective” parameters have to be calibrated 

to represent the processes at scales different from the ones for which they were initially 

conceptualized.  To avoid this issue, the scales’ physical processes that are 

conceptualized in the model should be defined a priori and should not change from one 

application to the other since governing equations are sensitive to scale.  When possible, 

governing equations that represent the punctual description of physical phenomena 

should be avoided.  Attention should be focused on representing properties and processes 

that emerge with increasing scales.  This approach would allow the construction of 

minimally parameterized models that attempt to represent the macro-scale properties of 

the physical system (McDonnell et al., 2007). 

Besides the known mathematical difficulties involved in parameter calibration, 

this procedure is still widely used and somehow accepted as a standard procedure in 

hydrology.  Many current studies attempt to establish criteria and develop better methods 

for parameter calibration (Wang et al., 2010; Lombardi et al., 2011; Luo et al., 2011) 

(Refsgaard, 2001).  However, even if calibration methods could be improved to the extent 
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that a unique optimal solution could be found, parameter calibration is only justifiable 

under the assumption that the model’s structure is perfect and all data used in the 

calibration procedure, including input, output, and datasets used to estimate measurable 

parameters of the watershed (DEM), are error free.  This faultless situation is unlikely, 

due to the large complexity and variability of natural systems that complicate their 

accurate quantification in space and time.  Moreover, parameter calibration based on 

historical series is not applicable under non-stationary conditions caused by land cover or 

climate change. 

Recent publications reveal that the hydrological community now recognizes that 

the calibration procedure imposes barriers to knowledge development, and members of 

the community have been searching for approaches that promote systematic learning 

(Buttle, 2006; Kirchner, 2006; Sidle, 2006; Soulsby et al., 2006; Tetzlaff et al., 2008; 

Sivapalan, 2009; Loague et al., 2010; Kavetski, 2011).  Calls have been made for more 

unified and holistic theories based on natural laws and on the concept of catchments as 

self-organizing systems (Beven, 2007; Sivapalan, 2009; Gupta et al., 2010).  One 

example is the work presented by Gupta (2004), who introduced the idea that hydrologic 

systems should be treated as statistical–mechanical systems.  In this case, hydrological 

systems can be compared to thermodynamic systems, for which macroscopic parameters 

emerge from microscopic statistical dynamical equations governing molecular motions.  

Thermodynamic equilibrium, for example, is described only by macroscopic variables, 

even though microscopic statistical fluctuations are still present.  According to the author, 

flood properties observed at larger scales (e.g. peak flow scaling) can be related to 

statistical physical properties observed at small scales (hillslopes).  This approach would 

eliminate the need for calibration since parameters would be related to measurable 

physical variables, like rainfall, or basin properties.  

According to Gupta et al (2010), peak flow macro behavior arises from the 

aggregative effect of the river network that works as a filter for small-scale variability.  
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This dynamic is reflected in peak flow scaling power law relationships, which parameters 

are related to river network properties and hillslope scale processes space–time 

variability.  This hypothesis is the basis for the geophysical flood theory (Gupta, 2004).  

This framework provides the advantage of requiring statistical distributions of certain 

properties (precipitation, runoff generation) at the hillslope scale in addition to their exact 

values everywhere.  In a recent publication, the same authors (Gupta et al., 2010) 

reinforce the concepts behind this theory using the extreme flood event that occurred in 

Iowa in the summer of 2008.  The authors also propose methods and procedures that 

should be adopted to test different theories related to the links between macro and micro 

properties.  

To better understand the links between macro and micro properties, Gupta et al. 

(2010) propose a framework that allows testing different hypotheses related to the 

dynamics of the hydrological systems and how they change across scales.  I follow their 

recommendations to conceptualize the model developed in this work.  Hydrological 

processes are described at the hillslope scale, and space-time variability is introduced 

when the basin area consists of a large number of hillslopes.  The river network provides 

the link across different scales.  I avoid calibration by estimating parameters that describe 

physical processes at the hillslope scale and that are based on measurable physical 

properties (Barnes, 1995).  This is now possible due to recent advances in the indirect 

measurement of land surface properties (Wolfe et al., 2009), water storage (Zaitchik et 

al., 2008), and hydro-meteorological variables (Huffman et al., 2007) on a global scale.  

The potential use of these databases for hydrological modeling and flood prediction is yet 

to be explored and constitutes one of the goals of this work.  
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Direct and indirect application of  

remotely sensed data for flood prediction  

Remote sensing technology provides key information for evaluating the local, 

regional, and global water balance (Schultz, 1996; Bindlish et al., 2009; Conesa-Garcia et 

al., 2010).  These datasets can potentially be used to predict floods, but some limitations 

are imposed by the coarse resolution of the information in space and time, the sampling 

interval, and retrieval uncertainties (Lakshmi, 2004).  To optimally apply these data, we 

need to understand the information content of each dataset and determine the best way to 

apply them specifically to flood prediction.  In some cases, the monitored information 

(e.g digital elevation model and precipitation) is directly used in the flood prediction 

model.  In other cases, the remote sensing information is used as forcing for continental 

scale land surface models that perform water and energy flux analysis (Lohmann et al., 

2004).  The outputs of these models are potentially useful for flood prediction (e.g. soil 

and surface moisture states, vegetation interception, actual evaporation).  Even when 

uncertainties are involved, these models are able to capture anomalies in terms of soil 

moisture and runoff conditions, as demonstrated by Xia et al. (2012).  

The value of remote sensing data for flood prediction will also depend on the area 

of application.  These datasets will present higher values for data scarce regions.  For 

example, in the US, the National Weather Service operates a network of 159 high-

resolution Doppler weather radars that provides high temporal and spatial resolution 

rainfall maps that nearly cover the entire country.  In this case, satellite rainfall data will 

be used as a supplementary source of information, to fill up gaps in the operation, or to 

provide information for regions that are not covered by radars.  However, for many 

developing countries, satellite-based precipitation is the only dataset that provides space-

time rainfall information covering a large area.  Due to the economic situation, these 

regions are also extremely vulnerable to natural disasters such as floods.  Even though the 

value of remote sensing data is higher for regions where data is scarce, evaluation of 
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these datasets should be performed in data rich regions.  This way it is possible to isolate 

uncertainties due to data and model structure.    

In this section, I will present a summary of the information with potential value 

for peak flow simulation.  Available remote sensing information can be classified as 

“Static” or “Dynamic.”  “Static” variables (e.g. topography) usually present better 

accuracy and resolution than “dynamic” variables (e.g. precipitation, soil moisture, snow 

melt, and land cover dynamics).  Table I-1 presents a list of physical processes and 

variables that should be accounted for in flood prediction.  In this table, I include 

different datasets that are classified according to the source of information:  satellite 

remote sensing or other.  This list is not exhaustive, but the intent is to demonstrate what 

type of information is available to represent different physical variables and processes.   

Throughout this document, I will discuss the main features and limitations of 

some of these datasets.  I use the same event to investigate the relative contributions of 

different datasets to uncertainties in predicting floods.  I first perform simulations using 

high resolution and accuracy datasets, when available.  When these datasets are not 

available, remote sensing datasets or continental land surface model inputs and outputs 

are used.  Since I do not use streamflow and precipitation to calibrate parameters, the 

differences between observed and predicted streamflow reflect uncertainties in the 

datasets and/or model structure.  I then perform simulations using the degraded datasets 

to investigate the effect of the error on flood prediction.  I focus on identifying the main 

data error features that cause major errors in flood prediction.  This allows us to 

formulate guidelines for flood prediction using currently available information and to 

define what should be the major data requirements of future missions. 

I do not focus on evaluating existing satellite-based products, since the capability 

to monitor hydro-meteorological variables from space will improve considerably in the 

near future with the launch of new missions that focus on monitoring the environment.  

The most relevant ones for flood prediction are the Global Precipitation Mission 
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(GPM)(Smith et al., 2007), the Soil Moisture Active Passive (SMAP) mission (Entekhabi 

et al., 2010), the Surface Water and Ocean Topography mission (SWOT) (Durand et al., 

2010), the Cold region hydrology high-resolution observatory (CoReH2O) (Rott et al., 

2010), and the GRACE II mission (Zaitchik et al., 2008).  GPM will be launched in 2014 

and promises to achieve temporal sampling equal to 3 hours 90% of the time.  It also 

includes dual-wavelength precipitation radar at 13.6 and 35.5 GHz, which presents the 

high sensitivity necessary to detect light rain and snow as low as 0.3 mm h−1.  SMAP is 

also set to be launched in 2014 and will provide global measurements of the land surface 

soil moisture and distinguish frozen from thawed land surfaces.  CoReH2O will provide 

the extent and water equivalent of the snow cover with resolutions ranging from 100 to 

500 m.  SWOT will provide water elevations along rivers, lakes, streams, and wetlands 

and over the ocean’s surface using swath altimetry.  GRACE II will provide high-

temporal-resolution gravity fields for tracking large-scale water movement. 

Study Area 

 In our work, I analyze the Iowa, Cedar, and Turkey River Basins that are located 

almost entirely in the state of Iowa.  The total drainage area of the Iowa River is 7,234 

km2 (at Marengo), 16,853 km2 for the Cedar River (at Cedar Rapids), and 4,000 km2 for 

the Turkey River (at Garber).  Some analyses with high resolution data (DEM) will be 

performed for a tributary of the Iowa River, Clear Creek, that presents a drainage area 

around 254 km2 (at Coralville).  Clear Creek makes part of the CUAHSI WATERS Test 

Bed catchment.  The locations of these catchments are presented in Table I-1.   

I chose this study area for two main reasons.  First, the region is rich in hydrologic 

information.  Four NEXRAD weather radars (in Des Moines and Davenport in Iowa, La 

Cross, Wisconsin, and Minneapolis, Minnesota) cover the two basins; also 24 USGS 

streamflow gauges collect data at the outlet of drainage areas ranging from approximately 

22 to 16,853 km2.  Figure I-1 presents a map of the study area with the location of the 
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weather radars and the USGS streamflow sites.  The second reason for selecting the area 

is its frequent flooding.  The region was the center of an extreme flood event in 2008 that 

affected approximately 1.2 million acres of Iowa’s agricultural land and many 

communities throughout the state.  About 1,300 blocks in the city of Cedar Rapids were 

flooded, which affected more than 5,000 homes and 900 businesses.  In Iowa City, 

sixteen buildings on The University of Iowa campus were reported flooded, and the total 

cost of recovery from the flood reached $750M.  I will use the 2008 flood event to 

demonstrate the hydrological model’s ability to predict floods across scales and to 

investigate the effect of rainfall uncertainty on the prediction of floods.  The climate in 

this region is characterized by cold winters, hot summers, and wet springs, with mean 

annual precipitation of 864 mm (source: Oregon Climate Service), potential evaporation 

of 1060 mm, and actual evaporation of 580 mm (based on MOD16).  The dominant land 

cover is used for agriculture, consisting mainly of a corn-soybean rotation.  The 

agricultural practice imposes a strong seasonality on land cover dynamics.  The planting 

season usually starts in May and concludes in November.  

In this study, I simulate streamflow for the period of 2002 to 2009.  I performed 

an annual water balance with the goal of better understanding the climatology and intra-

annual variability of the components of the hydrological cycle.  Areal rainfall, 

evapotranspiration, potential evapotranspiration, and runoff were calculated for all of the 

basins for which streamflow data is available for the period of 2002 to 2009.  To estimate 

areal average precipitation, I used Stage IV precipitation products with 1-hour temporal 

and 4 km spatial resolution obtained on the NCEP website.  Evapotranspiration and 

potential evapotranspiration were estimated using 8 days of temporal and 1 km spatial 

resolution MODIS products (see Mu et al., 2011 for details on MODIS 16 product), 

obtained on the website maintained by the Numerical Terradynamic Simulation Group, 

the University of Montana (www.ngts.umt.edu/modis/).  DEM data with 90 m resolution 

was obtained from the USGS National Elevation Dataset (NED) project and was used in 
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the delineation of each sub-catchment with observed streamflow.  The time series of 

precipitation, evapotranspiration, and streamflow were aggregated to the annual scales for 

all sub-watersheds.  In Figure I-2, I present the results for all years (2002-2009) and sites 

(blue dots represent different sites and red dots the average for all sites).  Figure I-2 (a) 

presents annual precipitation, Figure I-2 (b) annual evapotranspiration, Figure I-2 (c) 

annual runoff, and Figure I-2 (d) the difference between total annual inflow 

(precipitation) and outflow (evaporation and runoff).  All quantities are in mm. 

Assuming that ground-water flow is negligible, differences between watershed 

inflow (precipitation) and outflow (evapotranspiration and runoff) are equal to changes in 

soil storage.  When inflow is larger than outflow, recharge occurs, whereas the soil is 

depleted in the opposite case.  Figure I-2 demonstrates different hydrological and 

climatological conditions observed during the period of 2002 to 2009. For the years 2002 

and 2003, total inflow (precipitation) and outflow (evaporation and runoff) were very 

similar, so no large differences in soil storage occurred.  From 2004 to 2007, inflow was 

much larger than outflow.  The difference was probably retained in the soil storages.  The 

situation changed during 2008, when an extreme flood occurred in the region.  Even 

though accumulated precipitation was very similar to that observed in the previous year 

(around 1000 mm), runoff for 2008 was on average 30% larger than in 2007.   

A possible explanation for the extremely high runoff ratio observed in 2008 was 

given by Krajewski et al. (2010).  According to the author, aside from the large volume 

of precipitation, the occurrence of a perfect storm was noted as a determining factor that 

led to an event of such extreme magnitude.  A perfect storm might not be extremely large 

in terms of total accumulations, but it occurs at the perfect time and location to cause a 

coordinated rise of the river levels.  This feature highlights the importance of representing 

space-time rainfall variability to correctly simulate floods.  As indicated by the author, 

the main storm that occurred in 2008 followed the river network path (from northwest to 

southeast).  In this way, the flood waves and storm clusters travelled in the same 
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direction, intensifying the situation in already critically flooded areas.  Another 

assumption is that old water, i.e. the water that was accumulated in the soil during 

previous years, contributed significantly to runoff generation.   

An overall look at the spatial (for different sites in the same year) and annual 

(across years) variability of the diverse components of the water balance provides clues  

about the temporal and spatial variability of the different components of the water 

balance.  Evapotranspiration remains almost constant throughout the years (around 580 

mm), and a variation of less than 5% is observed from site to site.  Precipitation varies 

from 560 mm (minimum in 2003) to 1150 mm (maximum in 2008).  Spatial variation is 

also significant: for 2003, precipitation values varied from 560 mm to 790mm, a 

difference of more than 200mm.  Total annual runoff presents the highest variability in 

space and time among the water balance variables.  This is expected since runoff 

generation depends on a large number of factors including space-time variability of 

rainfall, soil moisture conditions, and land surface and soil properties.  

The large variability in runoff generation and soil storage summarized in this 

picture demonstrates the complexity of runoff generation processes.  It is clear that a 

simple translation from rainfall into runoff is not possible, so in order to accurately 

predict floods there is a need to represent all relevant hydrological processes, including 

precipitation, infiltration, overland flow, evapotranspiration, soil dynamics, baseflow, and 

transport through the river network.  In this thesis, I attempt to design a coupled 

hydrological model that is able to represent all the complexities and feedback involved in 

flood generation.   

Methodology  

Predictability skill is defined as the accuracy and the degree of precision to which 

a system’s state can be predicted using a specific model and dataset.  Perfect 

predictability can only be achieved for strict deterministic processes, i.e. if all 
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complexities are known and included in the model and if all the essential data to describe 

these processes and how they change in time and space are available with the required 

accuracy and resolution.  In the case of a natural system, this situation is unfeasible 

considering all of the existing non-linearities and heterogeneities.  Therefore, it is 

essential to investigate how data predictability skill is affected by different datasets and 

model structures and to determine what are the dominant processes that must be included 

in the model.  

As stated in the introduction of this thesis, the fair evaluation of different datasets 

for flood prediction requires a multi-scale calibration-free simulation framework that 

isolates uncertainties due to model structure, parameter estimation, and data.  The first 

component of this study constitutes the development of a fully distributed, physically-

based, and calibration-free hydrological model.  Calibration is avoided with the use of 

parameters that are directly linked to the physical properties of the watershed (e.g. soil 

water storage, hillslope shape, and channel flow velocity).  The fact that the model 

parameters are not calibrated to fit the discharge data implies that the uncertainties in the 

input are independent of the errors in the simulated discharge.  This also means that I 

have avoided favoring the scales at which I have available discharge observations.  So, 

theoretically, the model is equally able to predict floods everywhere, without the need of 

calibration, in the spirit of the PUB initiative (Sivapalan et al., 2003).  Chapter 2 presents 

a description of the models. 

I adopt the downward approach to model building (Sivapalan et al., 2003).  I start 

with a simple model that accounts for first-order controls in flood generation, and I 

systematically add different processes to the model formulation in response to 

deficiencies in reproducing observations.  In the process, I question whether the 

discrepancy between the model’s simulated and observed responses could be due to the 

uncertainty in the input or to a neglected process.  This technique allows the 

identification of the dominant processes that have to be included in the model‘s 
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formulation in order to capture the necessary dynamics of flood generation across scales.  

I also identify the level of complexity needed to correctly represent the processes.  I opt 

for simple conceptualizations that capture the overall behavior of the system, without 

over-parameterizing the model.  I do not include physical processes for which no data is 

available to support parameterization.   

Prior to using the model as a tool to evaluate different datasets, I evaluate the 

model’s performance in accurately representing the hydrologic response to heavy rainfall.  

First, the model is implemented using the datasets with the highest available resolution 

and accuracy.  This way I minimize errors due to input and parameterization and are able 

to identify the model’s structural insufficiencies.  Once I am confident that all required 

components (dominant processes and level of complexity) are identified and adequately 

represented in the model, I can use it to investigate the predictability skills of satellite-

based datasets that are less accurate and have lower resolution. 

I use two criteria to evaluate predictability skills of different datasets.  The first is 

based on the nonlinear geophysical theory of floods (Gupta et al., 2010).  Rainfall 

intensity, duration, and variability, the river network topology and flow dynamics, and 

rainfall-runoff mechanisms shape the relationship between peak flow and drainage area.  

In a diagnostic framework, I explore how peak flow scaling changes as I degrade data 

accuracy or resolution.  Normally, a power law relationship is used to describe peak flow 

scaling.  The parameters of the power law relationship (coefficient and exponent) are 

estimated based on least-square regression.  However, during the development of this 

work I concluded that as coefficients and exponents are correlated, the least square 

method is not robust.  Therefore, when necessary, I opt to use a non-parametric kernel 

regression to estimate peak flow scaling relationships.  The advantage of nonparametric 

regression is to directly estimate the regression function between the independent 

variable (in this case drainage area) and the dependent variable (peak flow) rather than to 

estimate parameters.  This type of regression relaxes the linearity assumption required for 
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parametric methods (Black and Smith, 2004).  In the majority of the cases, I compared 

various datasets by analyzing the relative difference between peak flows simulated based 

on the reference dataset (e.g Stage IV for rainfall) and the degraded ones (satellite-based 

rainfall) across scales.  Other important features of the area versus peak flow power laws 

are the scatter around the fitted line and the presence or absence of a change in the slope 

of the line, indicating a scale break.    

The second criterion evaluates the performance of the model in simulating 

observed hydrographs across scales.  Two standard indices, the correlation coefficient 

(CC) and the Nash-Sutcliffe efficiency coefficient (Krause et al., 2005), were used to 

evaluate the model’s performance.  The CC is a measure of how much of the observed 

dispersion is explained by the prediction and indicates how well the model captures the 

timing of the hydrographs (rising and falling).  However, since only the dispersion is 

quantified, models that systematically over- or under-predict still present high correlation.  

The NSC index takes values over the range of [    ].  Values equal to zero indicate that 

the model’s predictions are as accurate as the mean of the observed data, whereas 

efficiency less than zero occurs when the observed mean is a better predictor than the 

model.  I compare observed and simulated hydrographs for sites ranging in area from 22 

to approximately 17,000 km2. 

Our goal is to evaluate flood prediction sensibility to data accuracy and resolution 

and to identify the scales for which remotely sensed data is beneficial for flood 

prediction.  Two types of simulation studies are performed.  Synthetic simulations follow 

the methodology adopted by Mandapaka (2009).  The author used synthetic events to 

investigate the effects of rainfall duration, intensity, and intermittence on flood scaling 

parameters.  In this case, I force the model with synthetic data and adopt a systematic 

diagnostic framework to further understand the role of different inputs, variables, and 

processes in the scaling structure of peak flows.  This methodology allows complete 

freedom to explore a large number of model and data scenarios and to determine their 
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effects on the scaling properties of floods.  I also perform real event simulations using the 

extreme flood event that occurred during the summer of 2008 in Iowa.  

Overview of thesis chapters 

In Chapter 2, I describe the hydrological model developed in this work.  In 

Chapter 3, I present model results.  I apply the most complete version of the model to 

simulate streamflow for the period of 2002 to 2009 for the Iowa River, Cedar River and 

Turkey River basin.  I then illustrate the importance of a multi-scale evaluation of model 

results and why calibrated models can yield misleading interpretations of model 

capabilities, especially if the model is calibrated for specific events or climatological 

conditions at one specific location.  For this analysis, I use very simple models with a 

limited number of parameters (2 or 3).    

Once I demonstrate the skills of the model on simulating flood events, I apply it 

as a tool to investigate how data uncertainty propagates through the model and to 

ascertain what the potential requirements and limitations of using remote sensing data to 

predict floods are.  I focus on the two main variables that shape floods: river network 

structure and rainfall intensity and space-time variability.  DEMs are used to extract the 

river network, outline model control volumes (e.g grid, sub-watersheds, hillslopes), and 

calculate land surface slopes, which controls runoff transport.  In Chapter 4, I investigate 

the impact of the DEM source, resolution, and network pruning on the characterization of 

the river network and on estimation of peak flow magnitude and timing across scales.  

Results presented in this chapter reveal the importance of correctly representing the river 

network and its property in hydrological models that focus on peak flow forecasting. 

Rainfall is the main input to hydrological models, and its uncertainties may 

strongly affect streamflow simulation (e.g. Arnaud et al. 2011).  In Chapters 5, 6 and 7, I 

investigate the effects of rainfall uncertainty on flood prediction across scales.  Weather 

radars are the only operational instruments capable of providing rainfall estimates over 
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large domains with high space-time resolution.  Radar-rainfall estimates are subject to 

significant uncertainty (see Villarini and Krajewski (2010) for a review), and their use for 

flood prediction requires a better understanding of how the estimation errors propagate 

through hydrological models and affect streamflow prediction across scales.  In Chapter 

5, I explore the effects of uncertainties in radar-estimated rainfall on streamflow 

prediction at a range of spatial scales.  I applied a recently proposed statistical model of 

radar-rainfall error structure to produce input ensembles of different expected radar-

rainfall error scenarios, used the generated ensembles as input for the hydrological model, 

and summarized the effects on flow sensitivities using a relative measure of the ensemble 

peak flow dispersion for every link in the river network.   

In Chapter 6, I perform simulation studies to investigate the potential of using 

satellite-based rainfall maps for flood prediction.  I first use high-resolution radar rainfall 

maps to reproduce data with the same characteristics of the product obtained by satellites, 

including coarser resolution and lower temporal sampling.  I use the manipulated datasets 

as input to the model to evaluate the possible effects of these data properties on flood 

simulation.  I independently investigate the effect of coarse spatial and temporal 

resolution as well as sampling frequency on peak flow estimation across multiple spatial 

scales.   

In Chapter 7 I perform simulations using various available rainfall products to 

evaluate how different they are from each other, and to assess how these differences 

propagate though the hydrological model.  The main goal of this chapter is to understand 

what the current limitations of satellite rainfall data for flood prediction are and to 

provide a rational basis for future data requirements and improvements.  I included in the 

analyses four radar-based products (Stage IV and higher resolution products produced by 

the Hydro-NEXRAD system), two gauged based products (NLDAS-2 and MAP-NWS), 

and two satellite products (PERSIANN AND CMORPH).  The description of each one of 

these datasets is provided in the Chapter.  The results presented in this chapter 
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demonstrate the difficulties on correctly estimating rainfall space-time variability and 

intensity even when weather radars and rain gauge data are available.   

 In Chapter 8 I present preliminary results of a sensitive analysis to assess the 

impacts that bias on the estimation of PE or soil moisture initial conditions have on 

simulated peak flow across scales.  I investigate the impact of these variables on 

simulated peak flow for the following years: 2002 (dry condition), 2003(medium 

condition, 2004 (intense flood), and 2008 (extreme flood).  Even though I have used very 

simple methods to simulate evapotranspiration and to estimate soil moisture initial 

conditions, I demonstrate that these processes have a less significant effect on peak flow 

simulation as compare to the effects of rainfall uncertainties.   

Chapter 9 presents the thesis summary, concluding remarks, and 

recommendations for future studies.  I also include a discussion in terms of the main 

limitations of the model developed in this work and recommendations for further 

improvements.   

I included an appendix that describes the methodology used to propagate the flow 

through the river network.  I adopt the Network Hydraulic Geometry concept proposed 

by Mantilla (2007).  In Mantilla’s formulation, velocity is a non-linear function of 

discharge in each link and the corresponding upstream area.  The parameters of this 

equation can be estimated using hydraulic measurements provided by the USGS.  I first 

perform a data analysis to investigate how these parameters change across the US.  I then 

use the measurements available for the Cedar River, the Iowa River, and the Turkey 

River, IA, to estimate the parameters for the study area.  I subsequently perform a 

simulation study to investigate the effects of river flow dynamics on the statistical 

structure of peak flow and demonstrate that flow dynamics affect peak flow scaling of 

large basins, while hillslope processes mainly control the response of small-scale basins. 

In the second part of the study, I use the estimated parameters to simulate real 

events.  The direct use of these parameters results in overestimation of flows since water 
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seems to flow faster than expected.  A constant advection correction factor can be used to 

correct the parameters that are estimated using real data, which slows down the flow 

across scales.  A discussion of the assumptions that result in a faster movement of the 

water across the network will be presented in the final version of the thesis. 
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Table I-1. Space-based remote sensing and global datasets, and high resolution datasets 
used to represent physical processes and properties responsible for flood 
generation 

PHYSICAL 
PROCESSES 

Space-based remote sensing and global datasets High resolution 

STATIC VARIABLES 
Landscape 
representation 
(river network 
and hillslope 
shape)  

ASTER GDEM  
(*ΔS=30 meters-1’’, updated 2009) 
SRTM  
(*ΔS=30 meters-=1’’ for US and ΔS=90 meters 
=3’’ globally, updated 2005) 
 

LIDAR  
(ΔS=1 meter) 
NED  
(*ΔS=10 -1/3’’ or 30 -
1’’ meters for US and 
ΔS=90 meters -3’’ 
globally, updated each 
two months) 
 

Hydraulic 
Measurements 

MODIS Band 2 data (near infrared, 0.841–0.876 
m) for estimating width (*ΔS=250 meters 
globally, updated 2005) 

USGS hydraulic 
measurements  

Soil properties  Harmonized World Soil Database (ΔS=0.5’)  
SRIC-WISE derived soil properties (ΔS=5’) 
FAO Digital map of the world 

SURGO and 
STATSCO ΔS= 
polygons with 1 to 10 
acres (~0.05km2)  

DYNAMIC VARIABLES 
Rainfall TRMM-V6 

 (**ΔT=3 hours and ΔS=0.25°) 
(Available from 1997 – include different product 
versions, almost real-time) 
CMORPH-2  
(ΔT=3 hours and ΔS=0.25°) 
(Available from December 2002, almost real-
time) 
PERSIANN  
(ΔT=3 hours and ΔS=0.25°) 
(Available from March 2000, almost real-time) 
Precipitation – North American Regional 
Reanalysis (NARR) (originally with 3 hours, 32 
km resolution) - disaggregated and interpolated 
to produce NLDAS-2 Model Input (ΔT=1 hour; 
ΔS=0.125°~13km, available from 1979, 
available with 1 week delay) 

Radar Stage IV - NWS 
(ΔT=1 hour and 
ΔS=0.05°, almost real-
time) 
 
Hydro-NEXRAD – 
super resolution 
(ΔT=15 min and 
ΔS=0.016°) 
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Table I-1 Continued 
Land cover 
type and 
vegetation 
dynamics 
(rainfall-runoff 
transformation 
and 
evapotranspirat
ion) 

MODIS Land Cover Type  
(ΔT=1 year and ΔS=0.5km ~0.008°) 
MODIS Land Cover Dynamics  
(ΔT=1 year and ΔS=1km~0.016°) 
MODIS Vegetation Indices  
(ΔT=16 days and ΔS=0.25km ~0.004°) 
(all MODIS products are available from 2000) 

National Land Cover 
Database (NLCD) 
1992, 2001, 2006 
(ΔS=30 meters ~ 1’’) 
  

Soil moisture 
(initial 
condition) 

AMSR-E monthly averaged soil moisture (ΔT=1 
day; ΔS=25 km~0.25°) 
(available from June 2002, available in real time) 
Total soil column wetness (0-200 cm) - NLDAS-
2 Model Output (ΔT=1 hour; ΔS=0.125°~13km) 
(available from 1979, available with 1 week 
delay) 

 

Snow melt and 
snow cover 

AMSR-E daily global snow water equivalent 
(ΔT=1 day; ΔS=0.25°~25km) 
(available from 1June 2002, available in real 
time) 
Snow melt - NLDAS-2 Model Output (ΔT=1 
hour; ΔS=0.125°~13km) 
(available from 1979, available with 1 week 
delay) 

 

Potential 
Evapotranspira
tion 

MODIS Potential Evapotranspiration Dataset 
(MOD 16) (ΔT=8 days; ΔS=0.016°~1km) 
(available from 2001 – not available in real time) 
Potential evaporation from North American 
Regional Reanalysis - NLDAS-2 Model Input 
(ΔT=1 hour; ΔS=0.125°~13km) 
(available from 1979, available with 1 week 
delay) 

 

VARIABLES FOR MODEL VALIDATION 
Evapotranspi
ration 

MODIS Evapotranspiration Dataset (MOD 16) 
(ΔT=8 days; ΔS=0.016°~1km) 
(available from 2001 – not available in real time) 

 

Streamflow   USGS streamflow 
measurements  
(ΔT=1/4 or 1 hour) 
(availability  depends 
on the site, real time) 

*ΔS – spatial resolution in minutes (‘), Arc-seconds (“), degrees (°) or km 

**ΔT – temporal resolution in minutes, hours, days or years 
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Table I-2. USGS sites in the Cedar River (CR), Iowa River (IR), and Turkey River (TR) 
basin 

Basi
n 

ID  
Map 

ID 
USGS   

Site Name HU Area 
(km2) 

CR 1 5457000 Cedar River Near Austin, MN 7080201 1033 
CR 2 5457700 Cedar River at Charles City, IA 7080201 2729 
CR 3 5458000 Little Cedar River near Ionia, IA 7080201 792 
CR 4 5458300 Cedar River at Waverly, IA 7080201 4005 
CR 5 5458500 Cedar River at Janesville, IA 7080201 4300 
CR 6 5459500 Winnebago River at Mason City, IA 7080203 1362 
CR 7 5462000 Shell Rock River at Shell Rock, IA 7080202 4520 
CR 8 5458900 West Fork Cedar River at Finchford, 7080204 2190 
CR 9 5463000 Beaver Creek at New Hartford, IA 7080205 898 
CR 10 5464220 Wolf Creek near Dysart, IA 7080205 774 
CR 11 5463500 Black Hawk Creek at Hudson, IA 7080205 784 
CR 12 5464000 Cedar River at Waterloo, IA 7080205 13322 
CR 13 5464500 Cedar River at Cedar Rapids, IA 7080205 16854 
IR 14 5464942 Hoover Cr at Hoover, W Branch, IA 7080206 7 
IR 1 5451210 S Fork Iowa R NE New Providence, 7080207 580 
IR 2 5451500 Iowa River at Marshalltown, IA 7080208 3966 
IR 3 5451700 Timber Creek near Marshalltown, IA 7080208 306 
IR 4 5451900 Richland Creek near Haven, IA 7080208 145 
IR 5 5452200 Walnut Creek near Hartwick, IA 7080208 184 
IR 6 5453000 Big Bear Creek at Ladora, IA 7080208 489 
IR 7 5453100 Iowa River at Marengo, IA 7080208 7233 
IR 8 5454090 Muddy Creek at Coralville, IA 7080209 23 
IR 9 5454000 Rapid Creek near Iowa City, IA 7080209 66 
IR 10 5454220 Clear Creek near Oxford, IA 7080209 151 
IR 11 5454300 Clear Creek near Coralville, IA 7080209 254 
IR 12 5452000 Salt Creek near Elberon, IA 7080208 520 
IR 13 5455500 English River at Kalona, IA 7080209 1486 
TR 1 5411850 Turkey River near Eldorado, IA 7060004 1660 
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Table I-2 Continued 
TR 2 5412020 Turkey River at Elkader, IA 7060004 2338 
TR 3 5412400 Volga River at Littleport, IA 7060004 901 
TR 4 5412500 Turkey River at Garber, IA 7060004 4000 
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Figure I-1. Study area with USGS sites for which streamflow data is available   
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Figure I-2. Water balance for the Cedar River and Iowa River sites, from 2002 to 2009.  
All units are in mm/year: (a) annual rainfall; (b) annual evapotranspiration; (c) 
annual runoff; (d) annual water balance (difference between rainfall and sum 
of evapotranspiration and runoff  
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CHAPTER II  

TOWARDS A CALIBRATION-FREE HYDROLOGICAL MODEL   

Criteria for model design 

I adopt the downward approach for model building (Sivapalan, 2003), for which 

complexity is systematically added to the model until all the main features responsible for 

flood generation are well represented in the model.  The development began with a 

simple conceptualization of the hydrological model that just included first order controls 

in flood generation.  The process that should be added to or improved upon was chosen 

based on the data signature patterns that were not being well reproduced by the model.  

Some authors have discussed and/or applied this approach (Klemes, 1983; Yilmaz and 

Gupta, 2008; Sivapalan, 2009).  However, these studies are still based on hydrological 

models that rely on calibration.  As discussed before, once you calibrate the model you 

cannot guarantee that good results are being achieved for the right reasons.  In this work, 

I avoid calibration by using parameters that can be prescribed a priori using physical 

properties of the watershed.  

I conceptualize our model by focusing on the elimination of some of the 

inconsistencies commonly encountered in hydrological models: 

Landscape decomposition and scale considerations: many models currently in 

use adopt a square-grid decomposition of the landscape.  Another widely-used technique 

involves decomposition of the study area in sub-watersheds using an ad-hoc and 

subjective criterion.  Examples of this type of decomposition are found, for example, in 

models that adopt control volumes that change depending on the physical characteristics 

of the study area, data availability, and study goal.  For example, Reggiani and Sivapalan 

(1998) stated that a representative elementary watershed (REW) can encompass the entire 

watershed or any smaller sub-watershed.  They stated that the size of the REW depends 
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on the spatial and temporal resolution for which the model is applied and on the spatial 

and temporal level of details of the available data sets. 

The fundamental problem with this approach is that governing equations used to 

describe the physical processes in hydrologic models are sensitive to the scale (Klemes, 

1983; Kirchner, 2006).  However, these models use the same governing equations even 

when very different scales are adopted.  In this work, I assume the existence of a 

fundamental hillslope (Montgomery and Dietrich, 1994) and decompose the landscape 

based on standard methodologies that attempt to identify the extent of the channel and the 

size of the hillslopes from Digital Elevation Models (DEM).  Model governing equations 

were specified to represent physical processes at these specific scales. 

Multi-scale evaluation of model results: In general, hydrological models are 

calibrated and validated using the observed responses at the basin outlet.  Good 

agreement between observed and predicted streamflow for this site, assured by parameter 

calibration, does not guarantee that internal processes are being correctly represented.  

Therefore, investigating the capability of the distributed hydrological model for making 

reasonable predictions across scales is vital (Smith et al., 2004; Hunukumbura et al., 

2011).  To certify that processes are being correctly represented across scales, I validate 

the model using observed streamflow at the outlet of nested basins ranging in scale from 

about 20 to 16,000 km2.  

Numerical methods: Clark and Kavetski (2010) recently demonstrated the 

unreliability of numerical techniques usually adopted in hydrological modeling.  They 

showed that numerical errors caused by fixed step explicit schemes overcome errors due 

to the model’s structure and further encumber the calibration procedure.   The authors 

recommend the use of the adaptive substepping method that is controlled by error 

tolerance.  To avoid numerical errors and to guarantee the numerical stability of the 

model, I adopted the Runge-Kutta-Felberg adaptive algorithm bounded to user specified 

maximum errors.  
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Direct or indirect measurable parameters: I avoid calibration through the 

adoption of parameters that represent average properties of our control volumes and that 

can be estimated based on available data.  This approach is in accordance with the ideas 

presented by Dooge (1986) that recommended micro-scale processes parameterization in 

order to achieve an understanding of hydrological laws at the catchment scale.  Beven 

(2012) recommended the use of appropriate scale-dependent sub-grid parameterization 

that accounts for epistemic uncertainties as a way to avoid the need for “hyper-

resolution” datasets for the implementation of global land surface modeling (Wood et al., 

2011).  Similar methods have been successfully applied in other fields of natural science.  

For example, in weather prediction, model parameterization is used to represent sub-grid 

processes for which observations are not available or are difficult to obtain.  

While parameterizations are simplified and idealized representations of complex 

physical processes, they retain the essential behavior of the processes they represent 

(Stensrud, 2007).  I parameterize all the processes that occur for scales smaller than the 

fundamental hillslope.  In the development of our process conceptualization, I took 

advantage of available distributed datasets.  Digital elevation models, land use, 

evapotranspiration potential, and soil properties are some of the observed data used for 

the model.  While not free from uncertainties, these datasets provide important 

information about average hillslope physical properties.  

Model development:  

general model components and complexity level 

For the reasons formerly mentioned, instead of using complex conceptualizations 

that suffer from equifinality, I opted for a simplified model formulation that does not 

require calibration and that does not provide an impartial tool to understand how errors 

propagate through the model.  Since I estimate parameters based on data, complexities in 

the model formulation are limited by data availability.  As noted by Blöschl (2001), for a 
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certain availability of data there is an optimum model complexity.  If more complex 

models are developed based on the same datasets, problems of parameter identification 

and model structure non-uniqueness become significant and reduce predictive 

performance.  I acknowledge that some important processes are not being represented in 

the model (e.g. soil macropores), but I believe that model complexity should follow the 

steps of data availability.  Therefore, the structure of the model should be improved as 

more data become available.  I focus on developing models that are just complex enough 

to represent the features that are relevant for flood prediction. 

Our specific goal for the model is that it should simulate basin response to rainfall 

forcing at a wide range of scales, with the smallest being a hillslope scale.  I reduce 

complexities in the hillslope dynamics by parameterizing known macro-scale 

hydrological behavior (McGlynn et al., 2002; Graham and McDonnell, 2010).  The 

function of the hillslopes is to partition the rainfall input into surface runoff, infiltration, 

and evapotranspiration.  This is accomplished by using empirically based 

parameterizations of the relevant processes documented in the literature.  Runoff 

generated at the hillslopes is transported via the drainage network of connected links.  

Model equations at the hillslope and the link scale are based on mass and momentum 

conservation principles.  

Table II-1 presents a list of models with different levels of complexity and data 

requirements.  All of the models account for a realistic representation of the landscape 

(hillslope-link) and space-time rainfall variability.  I remap the radar rainfall squared grid 

units to the hillslope-link structure adopted in the model.  For model 1, I use a constant 

runoff coefficient in space and time and an average river channel velocity.  This model 

only requires the digital elevation model (DEM) for its river network delineation and 

rainfall information as its main input.  These two datasets are provided by satellite-based 

techniques on a near-global base: 30 (ASTER) and 90 (SRTM) meters DEM and rainfall 

maps with 3-hour temporal and 0.25ºx0.25º spatial resolution (3B42, CMORPH, 
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PERSIANN, and others).  However, the runoff coefficient and average channel velocity 

have to be estimated somehow.  I demonstrate in Chapter 3 that if I “calibrate” these 

parameters based on observed streamflow, I obtain a reasonable match between observed 

and simulated discharge for a single event (or year), but these parameters cannot be 

extrapolated for other sites or different climatological conditions.   

Complexity is added to the other models in terms of flow propagation through the 

hillslope and channel, rainfall-runoff generation, and the dynamics of water transport and 

storage in the soil.  This is accomplished by using empirically based parameterizations of 

the relevant processes documented in the literature.  For model 2, I add hillslope delay 

and define a constant velocity for the transport in the hillslope.  Model 3 accounts for 

non-linear hillslope and channel routing mechanisms.  For the hillslope, I use the 

Manning equation in which velocity is a function of the land cover type and the depth of 

water in the surface.  For the channel, I employ a recent formulation of flow velocity for 

a network of channels in which velocity is a function of basin scale and discharge.  I 

avoid using Manning equations to simulate transport through the channel since average 

channel slopes cannot be precisely estimated from DEMs.  Models 4 and 5 account for 

space-time variability in runoff generation.  Model 5 is the most complex version of the 

model and accounts for space-time variability in rainfall and rainfall-runoff generation, 

non-linear transport in the hillslope and channel, and baseflow.  For model 4, I increase 

complexity in terms of rainfall-runoff dynamics but decrease the complexity in terms of 

routing by using a constant channel and hillslope velocity.  Model 5 is the most complex 

model and includes complexity in runoff generation and routing.  I describe this model 

version in the following sections.  Examples of applications of the other models will be 

presented in Chapter 3. 

All the parameters of model 5 are estimated based on data.  The model uses the 

information on land cover and land use, soil types, and topography based on readily 

available data that are mapped to the scale of the hillslopes.  The function of the 
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hillslopes is to partition the rainfall input into surface runoff, infiltration, and 

evapotranspiration.  The selected water velocity model attenuates the aggregated 

discharge.  The model has a power law functional form, with the velocity dependent on 

the magnitude of the discharge and the upstream drainage area.  The coefficients of the 

velocity model are calibrated by using the USGS collected and published discharge and 

water velocity data.  The fact that the model’s parameters are not calibrated to fit 

observed discharge implies that the uncertainties in the input are independent of the 

errors in the simulated discharge.  Differences between observed and simulated values 

are due to data uncertainty or model structure.  Data uncertainty includes uncertainty in 

the observed input (precipitation and potential evapotranspiration) and output 

(streamflow) variables or in the datasets used to represent the physical properties of the 

basin (e.g. DEM, land cover, soil properties).  Model uncertainty can be due to processes 

that are not accounted for or not correctly represented in the model.  This approach 

allows us to recognize missing or incorrect processes as well as problems with 

observations.  

Landscape decomposition and control volumes 

Grid-based hydrological models have become popular (see a list of models in 

Kampf, 2007) since the raster format is largely adopted for land surface properties (land 

cover, DEM) and input data (precipitation).  However, in nature, a watershed is made up 

of hillslopes, where rainfall-runoff transformation occurs, and these areas are connected 

by the river network (links) that transports to higher order streams.  Grids are not natural 

control volumes and cannot accurately reproduce the paths of the water in a watershed 

(Dehotin and Braud, 2008).  Another strategy for landscape decomposition accounts for 

the generation of an unstructured grid that is based on Delaunay triangulation and uses 

the river network, watershed boundary, elevation contours, vegetation, and geology as 

constraints (Duffy, 2007).  In this case, delineated control volumes can have any size 
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since they depend on user specification or internal variability of physical properties.  

When the sizes of the control volumes are considerably different, scaling problems arise 

from the fact that the governing equations are not scale independent.   

In this work, I adopted a hillslope-linked based model.  This type of landscape 

compartmentalization provides a more accurate representation of the river network, with 

lower computational requirements.  The river network plays an important role in the 

scaling parameters of the peak flow power laws (Gupta et al., 1996; Menabde et al., 

2001; Gupta, 2004), and its correct representation is essential for simulating floods across 

multiple scales.  This method is also computationally more efficient when compared to 

grid cell models since it operates directly at the hydrological scale of interest (i.e. the 

hillslope).  To achieve the same level of accuracy in representing the river network using 

grid decomposition, a very fine mesh would have to be defined.  In this case, the large 

computational cost of the calculations performed by grid cells would constrain the 

applications to small areas (Yang et al., 2002).  Moreover, using hillslopes as the main 

control volumes allows the direct application of methods and theory developed in the 

field of hillslope hydrology.  Advances in this area have been made through field and 

numerical experiments (Jones and Swanson, 2001).  Hillslope-linked models provide a 

framework to extrapolate these findings to larger areas.  

The river network structure is extracted from DEMs using algorithms based on 

the maximum gradient method and pruning algorithms to determine the initial location of 

the river network (Mantilla, 2005).  In this procedure, all DEM pixels are classified either 

as hillslope or river network.  Figure II-2 presents the hillslope-link discretization for the 

Cedar River basin.  In this example, an area equal to approximately 17,000 km2 was 

divided into more than 60,000 hillslopes and links with an average hillslope area equal to 

0.2 km2.  Sub-watershed models (e.g. HBV, Kineros, SWAT) also use the discretization 

of the watershed in sub-areas where runoff is generated.  However, these models usually 

do not specify a clear criterion for the partition of the watershed, and the decision about 
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how to proceed is transferred to the user.  In the literature, we can find applications of 

these models for areas that vary in scale from hillslopes (~1 km2) to large watersheds (Gu 

et al., 2010).  However, in all of these applications, the model equations are kept the 

same. 

General model description 

I use a set of four coupled non-linear ordinary differential equations that describe 

changes in mass balance in each control volume to represent hydrological and hydraulic 

processes at hillslopes and links.  The four equations account for water balance in the (1) 

link; (2) surface hillslope storage; (3) saturated soil zone; and (4) unsaturated soil layers.  

All state variables are solved simultaneously using a time-adaptive numerical method to 

avoid numerical inconsistencies (Kavetski, 2011).  The solutions to these equations 

provide hydrographs at each channel junction in the network and continuously account 

for moisture states in the surface, saturated and unsaturated soil layers, and channels over 

the entire basin domain. 

Hillslope physical properties are averaged over its elementary area to provide 

information about average fluxes and travel time for different hydrological components 

that contribute to runoff generation.  As in nature, small scale heterogeneities in runoff 

generation are averaged out by the effect of the river network that links different areas in 

the basin and organizes flow transport.  Figure II-3 presents a schematic representation of 

the model’s main control volumes and fluxes.  The definition of the balance equations, 

fluxes, and parameters will be presented throughout this chapter.  I use upper case letters 

for static variables (e.g. total hillslope area) and lower case for dynamic variables (e.g. 

time series of precipitation, soil volumetric moisture). 

I implemented the model equations as part of the code built into CUENCAS, 

initially introduced by Mantilla and Gupta (2005) as a research tool to investigate 

morphological characteristics of the river network and its role in flow scaling.  
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Mandapaka et al. (2009) applied a simplified version of the model to investigate the 

effect of rainfall variability on the statistical structure of peak flow.  To investigate land 

cover changes’ effects on flood risk, Cunha et al., (2011) applied a more complete 

version of the model that includes surface and subsurface processes.  Gupta et al. (2010) 

referred to CUENCAS as an important tool to perform theoretical investigations that 

would explain the link between peak flow versus area scaling parameters and physical 

properties of the inputs and watershed.  Figure II-1 presents a flowchart with the main 

processes simulated by the model.  We indicate in the figure the processes that were 

introduced in the model during the development of this thesis and the processes that were 

previously implemented by Mantilla (2007).  

A semi-parallel version of the code was developed based on the 

compartmentalization of the basin into sub-basins according to a specific Horton order 

specified by the user.  The sub-basins are solved in parallel using as many processors as 

available or needed.  Initially, just external sub-basins that do not have a link contributing 

to it can be solved.  Once external links are solved, the internal sub-basins are solved.  

This process is followed systematically until all of the sub-basins are covered.   

In the next section, I present the description of model 5 listed in Table II-1.  I start 

with a brief description of the main model’s hydro-meteorological inputs.  Following this 

section, I summarize all the parameters used to characterize hillslope and channels.  Once 

all forcing and parameters are characterized, I introduce the balance equations for each 

control volume with correspondent fluxes. 

An Appendix will be included in the final version of the thesis with the equations 

in the version prepared by Dr. Rodica Curtu.  Dr. Curtu, from The University of Iowa’s 

Department of Mathematics, is exploring the role of non-linear hillslope and channel 

dynamics on flood generation.  The equations were worked out to a version more suitable 

for the study of the dynamical systems.  All variables were normalized and are 

dimensionless.  Dr. Scott Small is implementing this version of the equations in a more 
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efficient solver written in C language that takes advantage of parallel computing and will 

be the basis for a flood forecast system for Iowa, supported by the Iowa Flood Center 

(IFC) (Small et al., submitted).  

Model input: Hydrometeorological variables 

The model is forced by three main hydro-meteorological processes: precipitation 

( (       snow melt (  (     , and potential evapotranspiration (    (          

Precipitation (rainfall and snow) and evaporation are first-order controls in flood 

generation.  Rainfall and snow melt intensity, duration, and spatio-temporal distribution, 

combined with the river network structure, drive the way in which water is distributed in 

the landscape.  The focus of this study is on flood events caused by heavy rainfall.  

However, it is important to account for evaporation and snowmelt, since these processes 

define the basin moisture conditions that precede rainfall events. 

Precipitation is the main driver of floods; therefore three chapters of this thesis 

will are dedicate to investigate the effect of rainfall uncertainties on flood prediction 

across scales.  In Chapter 5, bias corrected radar rainfall is used as a reference in order to 

understand the impact of different types of rainfall error structures on peak flow 

prediction.  For long-term simulations, I will use Stage IV - NWS products (2002 to 

2009) with approximately 4 km spatial resolution and 1 hour temporal resolution.  In 

Chapter 6, I focus on errors introduced by rainfall space-time resolution or sampling 

interval. In  Chapter 7 I compare different rainfall datasets.  

Quantification of snow contribution is important because it sets soil and channel 

states for the beginning of the wet season.  Remote sensing is the only source of snow 

information that covers large areas and is continuous in space and time.  However, the 

coarse resolution of remote sensing datasets may not be appropriate for snow mapping 

and flow simulation in small basins.  In this work, I evaluate two different sources of 

snow information: (1) Snow melt products derived by the North American Land Data 
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Assimilation System (NLDAS) with hourly resolution in time and 1/8 degree resolution 

in space (Pan et al., 2003) and (2) snow water equivalent retrieval from AMSR-E L3 data 

(Tedesco and Narvekar, 2010).  In the second case, I neglect sublimation and snowmelt is 

calculated by the difference in the values of the snow water equivalents between two 

days. 

Dingman (2002) defines potential evapotranspiration (PE) as ”the rate at which 

evapotranspiration would occur from a large area completely and uniformly covered with 

growing vegetation which has access to an unlimited supply of soil water and without 

advection or heat-storage effect.”  PE strongly affects soil moisture content, especially 

between rainfall events in the summer and spring seasons, and consequently plays an 

important role in runoff generation.  In this version of the model, I use potential PE to 

estimate the actual evaporation from the surface and from the unsaturated and saturated 

layers of the soil.  Using PE to calculate actual evaporation assumes that the only 

limitation for evaporation is water availability.  No limitations are imposed on the 

evaporation of water from the surface storage.   

The soil evaporation from unsaturated layers are limited by the soil volumetric 

moisture and relative depth of water compared to the total depth of soil.  When a large 

amount of water is available, PE limits maximum evaporation.  I adopted two different 

data sources: (1) PE estimated based on remote sensing (MODIS 16) and (2) PE used as 

forcing by NLDAS-2 that was computed in NCEP North American Regional Reanalysis 

using the modified Penman scheme of Mahrt and Ek (1984).  MODIS products are 

provided with 1 km in space and 8 days resolution in time, while the NLDAS-2 products 

are provided with hour resolution in time and 1/8° (~13km) resolution in space.  

Model parameters 

In this study, I obtain all model parameters directly or indirectly from data and do 

not use calibration.  A summary of all parameters used in the model 5 (Table II-1) 



www.manaraa.com

 

 

39 

version of the model is presented in Table II-2.  Some of the parameters are directly 

measured (e.g. slope, hillslope area), while others are linked to physical properties of the 

watershed using empirical methods, data analysis, or hydraulic theories (e.g. infiltration 

parameters, velocity of runoff transport in the hillslope).  In this section, I will describe 

all of the parameters used in the model and discuss how they are obtained.  Some of the 

parameters are schematically represented in Figure II-3. 

Measurable hillslope and link parameters are obtained from the digital elevation 

model: hillslope relief   (  , measured in meters, hillslope drainage area   (  , 

measured in km2, hillslope length   (   that is equal to the link length, also measured in 

meters, and average surface slope   (  , measured in m/m.  DEM also provides the 

relationship between hillslope relief and area (see Figure II-3).  This function describes 

the curvature of the hillslope, which has a strong effect on saturated storage and, 

consequently, on the generation of overland flow (Talebi et al., 2008).   

I adopt a simplified conceptualization of the hillslope subsurface geometry to 

estimate impermeable area as a function of hillslope shape and water volume in the 

saturated soil layer.  In Figure II-3, I present a schematic representation of this geometry 

for convex (b-1) and concave (b-2) hillslopes.  Hillslope shape is an important factor 

affecting rainfall-runoff partitioning.  Convex hillslopes exhibit higher transport power 

(due to higher slope) and lower saturation capacity than concave hillslopes (Sabzevari et 

al., 2010) (see  Figure II-3 b-1 and b-2).  O'Loughlin (1981) demonstrated the 

relationship between impermeable area and topographic parameters using idealized 

hillslopes. 

I assume that the bedrock surface is parallel to the hillslope surface, so the water 

table is calculated as a function of water volume in the saturated soil layer.  I use the 

topography data (DEM) to estimate a relationship between the water table and the 

percentage of impermeable area (for an example, see plots in Figure II-3 b-1 and b-2).  
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To represent this relationship, I fit a third order polynomial function to the topographic 

data extracted from the DEM:  
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 Equation II-1 

 

In this equation,    is impermeable (saturated) area,     ⁄   (%) is the fraction of 

the total hillslope area that is impermeable when the water table is equal to     , and 

           ⁄  (%) is the water table normalized by total hillslope relief.  The parameters 

a, b, c, and d are subject to the following constraints:  
(1)  (     – Impermeable area is equal to zero if water table is equal to zero; 

(2)  (     (    (   = 1 –impermeable area is equal to hillslope area when 

water table is equal to hillslope relief (           ⁄         ⁄    ; 

The derivative of this equation with respect to the water table describes how the 

impermeable area changes when the water table level changes: 

   (    

  
(    (      

  

       
[ (     (  (

    (    

       
)    (  (

    (    

       
)
 

] Equation II-2 

In the literature, many theoretical and conceptual models are used to simulate soil 

dynamics and to predict subsurface flow.  The solution of high-dimensional physical 

models (Richards’ equations for subsurface flow) are not computationally efficient, 

especially if applied to a large number of hillslopes in a catchment scale model.  

Conceptual models are computationally efficient but usually present parameters that are 

not physically well-defined.  Basha and Maalouf (2005) derived models that simulated 

soil saturated flow in the hillslope, which combine a sound theoretical basis with the 

simplicity of conceptual models.  The authors demonstrated that simple models based on 

physical assumptions perform well in simulating soil drainage, while they also have the 

potential to be easily incorporated into large scale models.  

The model applied in this study was developed to simulate floods in a large range 

of basin scales.  Therefore, adopting a very complex physical model to simulate the soil 
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dynamics would be computationally unfeasible.  Also, I attempt to estimate the model’s 

parameters by using information that is available on a nearly global basis.  Models with a 

high level of complexity present a large number of parameters and, consequently, have 

large data requirements.  For flood prediction, it is important to correctly estimate the soil 

water balance and residence time to continuously estimate soil water content.  Another 

option is to assimilate remote sensing or the land surface model information of soil 

moisture to initialize flood simulations.   

I opted to implement a simplified model of soil dynamics that is computationally 

efficient but still preserves the link with physical parameters that can be estimated or 

measured.  I will demonstrate that despite the simple soil conceptualization, the model is 

able to capture the main hydrological processes that occur across scales.  Some 

assumptions have been made in the current version of the model in order to obtain this 

simplified representation of soil dynamics: 

1. The bedrock surface is presumed to be parallel to the hillslope surface, with   (   

representing the effective distance between these two layers.  The geometric 

distance between the two layers is equal to   (   divided by the soil porosity.  

This parameter characterizes the soil’s potential to store water.  

2. Hillslope relief is much larger than the effective depth of the impermeable layer, 

so the volume of water can be stored in the soil can be estimated by   (   

  (     (  .  

3. The soil is divided into two layers: above (unsaturated zone) and below (saturated 

zone) the water table level.  The average soil hydraulic properties are defined for 

each layer.   

4. The contributions from the confined aquifer located below the impermeable layer 

of rock are neglected.  

5. The hydraulic conductivity     (   of the soil layer is considered to be constant 

with depth, and unsaturated hydraulic conductivity       (   is calculated as a 
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function of the soil volumetric moisture.  Soil hydraulic conductivity usually 

decreases with depth, while in the unsaturated layer, unsaturated hydraulic 

conductivity can increase or decrease depending on soil conditions (Davidson et 

al., 1969).  The implementation of more complex soil models would require 

detailed information about the spatial distribution of soil hydraulic properties, 

which is currently not available.  

6. For each hillslope, the water table is parallel to the reference level 

(         ⁄ ), as indicated in Figure II-3.  Based on this assumption and 

assumptions (1) and (2), the volume of water in the saturated zone is      
(     

  (     (     and the volume available in the unsaturated zone is        
(     

  (        
(          Soil volumetric moisture is defined as the difference 

between the volume of water in the unsaturated zone and the volume available in 

the unsaturated zone: 

 (     
        (    

        (    
                                   Equation II-3 

The effective depth of the impermeable layer   (   [ ] is one of the most 

sensitive model parameters.  For some regions of the world, very detailed soil databases 

are available and can provide accurate values of   (  .  For other regions, not a lot of soil 

information is available, and global datasets or a methodology based on the Soil 

Conservation Service – Curve Number (SCS-CN) method is proposed.  Therefore, based 

on the definition of   (   and data availability, I define three different methods to 

estimate the effective depth of the impermeable layer:  

1. Using SURGO or STATSCO datasets:   is equal to the Available Water Storage 

(AWS) at 150 cm, defined as “the volume of water that the soil, to a depth of 150 

centimeters, can store that is available to plants.”  I recognize that this value will 

be inaccurate for regions where the bedrock depth is much greater than 150 
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meters.  However, due to the high quality of the SURGO, I opted to use this 

dataset in this study.  

2. The harmonized gridded global data set of soil parameters derived from the 

ISRIC-WISE soil database (Batjes, 2005) also provides available water storage 

with the same definition presented by SURGO.  

3. The Soil Conservation Service – Curve Number (SCS-CN) method estimates the 

potential maximum retention of the soil as a function of land cover and soil type.  

In the traditional way of applying the SCS-CN method, the potential maximum 

retention     of the soil is specified as a function of three classes of previous 

moisture conditions. 

In this work, I apply the SCS method in a continuous way and fix the potential 

maximum retention based on soil properties provided by the SSURGO dataset.  Soil’s 

water available storage changes dynamically according to soil fluxes (infiltration, 

percolation, base flow).  The original SCS-CN limitations have already been discussed in 

the literature (Michel, 2005; Durbude et al., 2011), and some solutions have been 

proposed.  In this work, I take advantage of the method’s definition and the large amount 

of data used to empirically estimate the method’s parameters as a function of available 

information (Land cover, soil hydrologic group), and I address inconsistencies in the 

original method through the use of a dynamic soil model. 

In Figure II-4 we present some soil properties for the study area.  The two maps in 

the top are based on SSURGO dataset and were used to estimate model parameters for 

the for the simulations presented in Chapter III. On the left I present saturated hydraulic 

conductivity (m/s) and on right available water capacity of sol (cm/150 cm of soil).  On 

the bottom I present data provided by the Iowa Geological Survey, DNR.  Bedrock 

surface elevation (ft) is presented on the left, and soils requiring tile drainage for full 

productivity on the right.  These two datasets could be used in the model if information 
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was available for the part of the basin located in the Minnesota State.  These dataset was 

just available for Iowa State  

Hydraulic conductivity is another soil property that shapes hydrological dynamics 

in the soil layer.  This variable is also provided in the datasets described in items (1) and 

(2).  For the Soil Conservation Service method, a relationship between the soil 

hydrological group and soil hydraulic conductivity is used.  As discussed before, due to 

the lack of detailed information on the vertical distribution of soil properties, average soil 

hydraulic properties are defined for each layer.  Hydraulic conductivity is estimated 

based on the datasets described before, and the unsaturated hydraulic conductivity is 

estimated using the empirical formula proposed by Davidson et al. (1969): 

       (    =     (     (  (   ( (       )                       Equation II-4 

Where      is the saturated hydraulic conductivity,        (     is the 

unsaturated hydraulic conductivity,  (     is the volumetric soil moisture, and b is a 

constant.  Using this equation, the author demonstrates that water draining from a soil 

profile is usually well represented using an average of hydraulic conductivity versus soil 

water content.  In the same paper, the author estimated the parameters b for three 

different types of soil: Yolo loam (48.2), Miller silty clay (196.5), and Cobb loamy sand 

(82.7).  

Hillslope is the fundamental model element where the partition of rainfall into 

interception, infiltration, evaporation, and runoff occurs.  Figure II-3 (a) presents a 

schematic representation of all the fluxes in the model, and weather radar rainfall is the 

main input.  I remap the radar rainfall squared grid units to the hillslope-link structure 

adopted in the model.  Once rainfall reaches the surface, it is transformed into surface 

ponding, and the ponding water infiltrates, evaporates, or runs to the channel.  The model 

accounts for the Hortonian overland flow (HOF) and saturation excess overland flow 

(SEOF).  HOF occurs when ponding water exceeds the infiltration capacity at the areas of 
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the basin where the soil is not saturated (permeable areas, represented by green in Figure 

II-3 (a).  In this region, the percentage of surface water that infiltrates depends on the 

deficit of water in the soil (soil volumetric moisture) as well as on the soil infiltration 

capacity.  Soil properties are provided by SSURGO.  SEOF occurs in the areas of the 

basin where soil is saturated (impermeable areas, represented by gray in Figure II-3 (a) 

(Freeze, 1980).  As in nature, HOF and SEOF might occur simultaneously in the same 

hillslope.  The transport of the ponding water is simulated using Manning equations.  

Roughness parameters are estimated based on land cover data.  

At the hillslope scale, I estimate infiltration based on the Soil Conservation 

Service Curve Number Method (SCS-CN).  SCS-CN is an empirical model that has been 

studied extensively since 1956 and has been applied by the hydrological community to 

solve diverse problems (Tsihrintzis, 1997; Mishra and Singh, 1999; 2004; Schneider and 

McCuen, 2005).  The method is based on empirical experiments conducted in watersheds 

with areas similar in size to the unit area defined by CUENCAS (0.05 km2).  This 

model’s main advantage is its reliance on only one parameter, i.e. CN that is directly 

linked to   .  The original SCS-CN method was derived to compute surface runoff as a 

result of an isolated rainfall event.  The method is based on the water balance equation 

and two fundamental hypotheses.  The first hypothesis states that the ratio of direct runoff 

to maximum potential runoff is equal to the ratio of infiltration to maximum potential soil 

retention (   .  The second hypothesis is related to the initial abstraction that is 

estimated as the fraction of the potential maximum retention: 

                                                Equation II-5 

 

    
 

 

  
                                               Equation II-6 

                                                    Equation II-7 

By combining the previous equations, accumulated runoff is calculated by: 
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(     

 

       
                                           Equation II-8 

In this equation, Q (mm) is the accumulated runoff and P (mm) the accumulated 

rainfall since the beginning of the event.  Taking the derivative of Equation 1-8 with 

respect to time, we obtain: 

  

  
   

  

  
 

  

  
 

(     (        
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                Equation II-9 

The left side of Equation 1-9 represents the percentage of rainfall that runs off 

into the river.  Infiltration is represented by (1-RC).  I modified the original SCS-CN 

version to account for soil and surface moisture that are continuously calculated by the 

model.  The first modification is related to the initial abstraction.  The initial abstraction 

accounts for surface storage, interception, and infiltration before runoff begins.  I 

explicitly account for these variables in the continuous version of the model.  I also 

assume that water from precipitation is first stored at the surface.  Once on the surface, 

this water becomes available to infiltrate, evaporate, or run to the river.  Infiltration is a 

function of the surface storage (  (    ) and the deficit of water in the soil      (     that 

is continuously calculated by the model: 

     (     (   (    )    (                               Equation II-10 

This model better represents reality since infiltration happens when there is 

available ponded water (and not just during rainfall events), and the soil storage potential 

is not a fixed value but depends on the soil moisture’s initial conditions.  Infiltration 

occurs continuously until all the water from precipitation runs to the river, evaporates, or 

infiltrates.  Under the previous assumption, I obtain a time dependent equation to 

estimate the infiltration and runoff coefficient: 

  (      (  (     (  (       (     (     )

(  (          (    )
 )                            Equation II-11 

Soil infiltration is also controlled by the maximum infiltration rate that is equal to 

    (    
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  (  (         (                                     Equation II-12 

   (           (       (    (    )                     Equation II-13 

Otherwise: 

   (         (     (    (    )                               Equation II-14 

Where    is a recession coefficient equal to [1/hour]. 

At the same time that infiltration occurs, part of the ponded water is also being 

transported from the hillslope to the river.  A non-linear reservoir method is used to 

propagate the water from the hillslope surface to the channel.  The flux from the surface 

to the link is a function of the amount of water stored in the hillslope (   (    

  (    )    The method is non-linear since  (    is also a function of the storage on the 

surface.   (    is related to the average time required for water to leave the hillslope and 

enter the channel, so it is dependent on hillslope size and geometry (larger catchments 

have larger T), slope, and land use (Dingman, 2002).  To estimate an average  (    for 

each time interval, I estimate an average velocity using Manning’s equation divided by 

the average distance followed by the water, assuming uniform ponding over the hillslope.  

The average distance is equal to the distance from the hillslope’s center of mass to the 

channel.  Considering that the hillslope area is divided in two by the channel, the 

hillslope width is approximated by   (  (    (  )⁄ , and the center of mass is located 

approximately at 0.6 of this distance (USDA-NRCS): 
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                          Equation II-15 

 (     
   (    

   (  
   (     

 

   
 (

    (  

  (  
)                           Equation II-16 

The spatial distribution of Manning’s roughness coefficient for hillslopes was 

then determined based on the land use map and the Manning coefficient that are a 

function of the land cover (Dingman, 2002).  
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Once the water leaves the hillslope, flow is propagated throughout the river 

network.  In order to solve the mass conservation equation that accounts for storage in 

each link, a relationship between link storage and link discharge should be established.  

Assuming that water depth is constant in a link (kinematic assumption), Mantilla (2007) 

defines channel discharge as a function of channel storage as    (  ⁄     .  In order to 

solve the balance equation for a channel link, I need to estimate flow velocities.  One 

option is to consider flow velocity as constant throughout the network.  However, this 

scenario is unrealistic since flow velocities exhibit great variability in space and time.  

Another option would be to consider the Manning equations, but in this case I need an 

estimation of channel slope, which is not accurately provided by DEMs.   

To overcome these issues, Mantilla (2007) proposed a non-linear model to 

describe space-time flow velocities throughout the river network as a function of the 

instantaneous discharge q and the upstream drainage area  (     : 

          (     
                                                 Equation II-17 

Where          are parameters that can be estimated based on hydraulic data 

collected throughout the river network.  Mantilla (2007) derived this equation under the 

following assumptions: 

 The geometry of the link can be represented by an average cross section; 

 Flow depth at a given moment in time t is the same along the link (kinematic 

assumption); 

 Flow velocity v in the channel is a function of the hydraulic radius and the 

channel slope; 

 Hydraulic similarity, i.e. different links in the network will share a common 

rescaled rating curve, holds for all channels in the river network.  

Paik (2004) derived the same equation by assuming an empirical relationship 

between peak flows of different return periods with basin area and a frequency factor 
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reported by Stall and Fok (1968).  The author used this equation to investigate the effect 

of non-linearity of flow routing on the timing and magnitude of the geomorphic 

instantaneous unit hydrograph (GIUH) peak flow. 

The role of flow velocities on the variability of flood peaks was investigated by 

Mantilla et al. (2006) and Mandapaka et al. (2009) in simulations of synthetic events with 

idealized runoff generation conditions for Walnut Gulch and Whitewater basin, 

respectively.  In our work, I extend the studies of these authors for more realistic rainfall-

runoff scenarios and investigate how it affects the simulation of real flood events.  The 

estimation of these parameters and the validity of this relationship to real flood events 

and the effects on peak flow simulation are discussed in Appendix A of this thesis. 

Balance equations and fluxes 

Our mathematical model comprises four differential equations that represent the 

dynamics of fluxes at the local control volume i, defined by one hillslope-link pair in the 

landscape:  (1) Runoff transport; (2) Surface hillslope storage; (3) Water table; and (4) 

Soil volumetric moisture in the unsaturated zone.  These equations will be described 

below.  All the fluxes in these equations are in mm/hour.  I normalized the flux equations 

by hillslope area in order to compare fluxes generated in different control volumes.  The 

first equation accounts for runoff transport through the river network.  Gupta (1998) 

proposed this equation based on the mass conservation in a channel link.  The link 

between channel storage and discharge and a space and time formulation for velocity in 

the river network were introduced by Mantilla (2007), which I briefly described in the 

previous section.  Combining these formulations, I obtain the equation that models runoff 

transport through the river network: 

[ ]
 

  
 (     [ ]  (  (   (     (          (       (    )      (      (    ) 
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Equation II-18 

Where      (     is the flux from the ponded area (surface) to the link,      (     is 

the baseflow (soil saturated layer to link),   (     is the snow melt,     (     is the sum 

of the discharge from the upstreams links, and  (     is the outflow from the link.    is a 

scale-dependent property of the river network based on the velocity equation introduced 

by Mantilla (2007) and defines the timescale of the process: 

  
(        

       (  
                                                   Equation II-19 

The function     (     represents the sum of fluxes from incoming channel-links, 

defined by j-th, connected directly to the link i-th: 

    (     ∑  (          (                                        Equation II-20 

The second equation accounts for the ponded water on the surface of the hillslope: 

 

  
  (     (  (         (         (       (    )           Equation II-21 

In this equation,   (     is the input signal in the form of rainfall,     (     is the 

infiltration from the surface into the soil matrix,      (     is the flux from the ponded 

area (surface) to the link, and   (     is evaporation from the surface.  I will next describe 

all the fluxes in Equation 2-18 and Equation 2-21.  

Once it rains, water is accumulated on the surface and is available for infiltration 

or runoff.  Surface runoff may be dominated by infiltration excess (Horton mechanism), 

saturation excess (Dunne mechanism), or a combination of both (Loague et al., 2010).  

Horton overland flow (HOF) occurs when the rainfall rate is higher than the soil surface 

infiltration capacity, resulting in the ponding of water.  The rate of infiltration that occurs 

in the permeable area is equal to: 

    (     
  (    

  (  
    (                                         Equation II-22 
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Where    (     is the infiltration capacity            defined previously as a 

function of the current soil moisture state, maximum soil infiltration rate, and surface 

water availability.  Saturation excess overland flow (SEOF) occurs when the soil 

saturated zone reaches the surface, resulting in an impermeable or almost impermeable 

layer.  This mechanism occurs with the portion of the precipitation that falls over 

impermeable surfaces.  The total water that will be accumulated on the surface is equal to 

the SEOF plus the portion that exceeds infiltratation capacities in the permeable surface.  

This water is available for runoff. 

As described before, flux from the hillslope surface to the link channel 

(     (    ) is based on a non-linear reservoir method and Manning’s equation.  An 

average distance followed by the water in the hillslope is estimated by assuming uniform 

ponding over the basin and that the hillslope center of mass is at 0.6 of the distance 

between the center point of a link and the basin divide:  

     (     
 

   
 (

    (  

  (  
)    (       (                        Equation II-23 

The flux   (     corresponds to the evaporation from the surface.  All evaporation 

components, including the ones from the saturated and unsaturated layers of the soil, are 

described at the end of this section.  I do not directly account for transpiration from 

plants.  However, the datasets used in this work provide potential evapotranspiration, 

which is the sum of potential evaporation and transpiration (Mu et al., 2007).  Water will 

also be removed from the soil depending on water availability in the saturated and 

unsaturated layers. 

The flux      (     represents baseflow, i.e. the flux from the saturated layer of the 

soil to the link.  The flow of water in a saturated medium is described by a modified 

version of Darcy’s law:        (        ⁄ , h being the hydraulic head.      ⁄   is 

equal to the topographic hillslope slope   .  This equation would be valid if the soil were 

totally saturated (     
(       (   .  However, as the soil is not completely saturated, 
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baseflow is also a function of the ratio between the saturated and the total soil volume.  

The final equation for baseflow, normalized by the hillslope drainage area, is:  

         (     (     (
      (    

  (  
)   (

  (    

  (  
)          Equation II-24 

It is important to point out that this soil representation was developed considering 

the available information for parameter estimation.  It is possible that other locations 

would require other conceptualizations, depending on processes that dominate soil 

dynamics.  For example, in this work I did not consider the existence of tiles in 

agricultural fields.  In the next chapter, I will demonstrate that even without the 

representation of tiling I achieved a reasonable representation of the soil dynamics.  It is 

probable that model results would be better if tiling had been considered.  However, at 

this point I do not have enough information about tiling locations, quantities, or even 

maintenance states to consider it in watershed scale models, even if I was to adopt very 

conceptual formulations.  This topic should constitute the object of future research. 

In this version of the model, I neglected snowmelt infiltration and sublimation and 

assumed that all snowmelt is directly transformed into runoff.  Snow water movement 

through the frozen soil layer is a complex process and is not the focus of this study.  On 

the one hand, soil ice content affects hydraulic conductivity through pore constriction 

because ice blockage decreases soil permeability and thereby impedes infiltration (Iwata 

et al., 2010).  On the other hand, due to the low permeability of frozen soils, much of the 

snow melt flows to depressions and ponds and then infiltrates at a rate comparable to 

saturated soil hydraulic conductivity (Hayashi et al., 2003).  Prediction of snowmelt 

dynamics would require a large amount of data.  As the focus of this work is on extreme 

flood events, snowmelt is just being considered here due to its importance in the 

establishment of the initial soil and channel conditions for the beginning of the flood 

season.  Future improvements on the model should include the implementation of a 

snowmelt infiltration model that accounts for the main controls on snow infiltration.  
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The next equation accounts for the water table level   (    .  The total soil 

volume is divided into saturated and unsaturated soil volumes.  The volume changes as 

water is added or removed from the saturated layer and, consequently, the water level 

changes.  Applying the chain rule, the water table variation is calculated by: 

     (    

  
 

     (    

       (    

       (    

  
                               Equation II-25 

The variation in the water table as a result of a change in the volume of the 

saturated soil layer (first term in Equation 2-26) is given by the hillslope curvature 

function (Equation 2-1) multiplied by   (  .  The second term in Equation 1-26 (?) 

accounts for the fluxes in and out of the saturated soil layer: 

     (    

  
 

  (  

  (     
   
   

(     
(     (         (         (    )    Equation II-26 

Where      (     is based on the extension of Darcy’s law to partially saturated 

media proposed by Buckingham (1907).  The author postulated that Darcy’s law is also 

valid for soils that are just partly saturated, and in this case (unsaturated) hydraulic 

conductivity is a function of water content.  The flux from the unsaturated to the saturated 

zone is defined as: 

     (           (    (     
  (    

  (  
                         Equation II-27 

The rate of change of unsaturated hydraulic conductivity with soil water content is 

a function of soil properties (Davidson et al., 1969):  

      (       (      (                             Equation II-28 

This model was chosen since it presents just one parameter,   , whose values are 

provided by the same author.  However, I recognize that the dynamics of flow in the soil 

are much more complex than it is being conceptualized here.  Soil unsaturated hydraulic 

conductivity depends on soil properties (e.g. texture or porosity, particle size distribution) 

and on the existence of alternative paths such as macropores.  Nevertheless, I opt to 
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maintain a parsimonious model in which parameters are linked to measureable properties 

of the watershed.  

 

The fourth differential equation accounts for changes in the unsaturated soil layer.  

By definition, volumetric soil moisture is the ratio between the volume of the water in the 

unsaturated layer of the soil and the total volume of this layer: 

  (    

  
 

 (        (             (     

  
                      Equation II-29 

I use the quotient rule to determine this derivative:  

  (    

  
 

 

       
(     

(
 (       

(     

  
        

(     
 (       

(    )

  

        
(    ) 

Changes in the volume of water in the unsaturated layer are caused by fluxes in 

and out of this control volume, while changes in the total unsaturated volume are equal to 

the negative of the changes in the volume of the saturated layer: 

  (    

  
 

 

       
(     

[       
(     (  (        (       (        (        (   

      (     )   ( (            
(    )  

 (         
(     

  
]                         Equation II-30 

 

Simplifying this equation, I obtain the equation that models the water table level 

in the hillslope: 

  (    

  
 

  (  

        (    
[

(    (         (     –       (    )

  (    (     (         (         (    )
]               Equation II-31 
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As previously described, I use potential evapotranspiration (    (    ) to estimate 

the actual evaporation from the surface (  (      and from the saturated  (    (      and 

unsaturated layers of the soil  (      (     .  The amount of water that evaporates from 

each one of these compartments depends on water availability and potential 

evapotranspiration.  No limitation is imposed on evaporation from the surface or 

saturated layer.  Evaporation from the unsaturated layer is a function of the soil’s 

volumetric moisture and the relative depth of water in this layer.  I first estimate the 

amount of water that can be removed from each compartment depending on water 

availability and potential evaporation: 

         (         (                                             Equation II-32 

      
  

  (  
  

  (  

    (  
                                           Equation II-33 

         (      
        (    

  
 

  

  (  
                           Equation II-34 

 

Water evaporates from all of the compartments at the same time, but the amount 

of water that evaporates from each compartment depends on potential evaporation and 

water availability.  To guarantee that the maximum evaporation is equal to the potential 

evaporation, I calculate a correction coefficient in the event that the sum of the 

coefficients is larger than one:  

  (                       )      
 

                     
 

                                                            Equation II-35 

The final evaporation for each layer is given by the following equations: 
 

  (                       (                                    Equation II-36 

     (                      (                                   Equation II-37 

       (                        (                                Equation II-38 
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Conclusions 

The hydrological community has recognized the need for a paradigm change in 

hydrology.  Traditional hydrological models face a number of intrinsic problems, many 

of which are covered in this chapter.  Recent advances in computer science, together with 

the capability to monitor hydrological variables from space, provide the opportunity for a 

change.  However, no advance will be achieved if I continue to expend our energy 

learning how to calibrate models instead of learning what hydrological processes are not 

well represented in our models.  

In this study, I progress toward the development of a calibration-free multi-scale 

hydrological model.  Processes were conceptualized taking into consideration the 

dominant processes for flood generation, model complexity, and data availability.  I 

attempt to represent all of the hydrological processes that are relevant for flood 

generation.  However, I opted to use simple parsimonious methods that utilize parameters 

that can be directly linked to physical properties monitored by remote sensing or a low 

cost field campaign.  Consequently, I discard over-parameterized methods that employ 

parameters that are determined simply through calibration.  

One important feature of the proposed model is the truthful decomposition of the 

landscape in areas where runoff is generated (hillslope) and in the river network.  The 

hillslope-link structure of the model allows a realistic representation of the landscape.  

The achievement of the same level of detail with a grid-based model is unfeasible since it 

requires the specification of very small domains (pixels), which dramatically decreases 

the computational efficiency of such models.  The correct representation of the river 

network structure is essential for multi-scale flood prediction since it has been 

demonstrated that channel network topology, together with rainfall and runoff generation, 

plays a key role in determining the peak flow scaling.  

In the following chapters of this thesis, I use the proposed hydrological model to 

simulate real and synthetic flood events.  I first demonstrate the model’s ability to predict 
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streamflow and peak flow for different basin scales and under different hydrological 

conditions.  Once I am confident that the model is able to represent hydrological 

processes without the need for calibration, I will perform simulations studies to better 

understand the role of data uncertainty or resolution in hydrograph and peak flow scaling 

prediction. 
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Table II-1. Processes representation and data requirements for different models version 
with multiple complexity levels 

Processes representation:      increasing complexity  increasing data requirements  

Model 1 2 3 4 5 
Landscape 
decomposition 

Hillslope-
link 

Hillslope-
link 

Hillslope-
link 

Hillslope-
link 

Hillslope-
link 

Rainfall Space-time Space-time Space-time Space-time Space-time 
EVPT    Space-time Space-time 
Infiltration     empirical empirical 
Overland flow Constant 

runoff 
coefficient 

Constant 
runoff 
coefficient 

Constant 
runoff 
coefficient 

HOF, SEOF HOF, SEOF 

Hillslope 
transp. 

 Constant 
velocity 

Non-linear Constant 
velocity 

Non-linear 

Percolation    Darcy-type  Darcy-type  
Baseflow    Darcy-type  Darcy-type  
Channel flow Constant 

velocity 
Constant 
velocity 

Non-linear Constant 
velocity 

Non-linear 

Data requirements:                             increasing data needs  

Landscape 
decomposition 

DEM DEM DEM DEM DEM 

Rainfall Radar data Radar data Radar data Radar data Radar data 
EVPT    MODIS or 

NLDAS 
MODIS or 
NLDAS 

Infiltration    LC, soil 
prop 

LC, soil 
prop 

Overland flow Average 
runoff 
coefficient 

Average 
runoff 
coefficient 

Average 
runoff 
coefficient 

LC, soil 
prop 

LC, soil 
prop 

Hillslope 
transport 

 Average 
hillslope 
velocity 

LC, Slope Average 
hillslope 
velocity 

LC, Slope 

Percolation    LC, soil 
properties & 
initial con. 

LC, soil 
properties & 
initial con. 
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Table II-1 Continued 
Baseflow    LC, soil 

properties & 
initial con. 

LC, soil 
properties & 
initial con. 

Channel flow Ave channel 
velocity 

Ave 
channel 
velocity 

Hydraulic 
measure. 

Ave channel 
velocity 

Hydraulic 
measure. 

EVPT = evapotranspiration, HOF = Hortonian overland flow, SEOF = saturated excess 
overland flow, LC = land cover, Cte = constant, Ave = average 



www.manaraa.com

 

 

60 

Table II-2. List of model’s parameters, forcing, fluxes, and state variables  

Parameter Symbol Units Inference method 

Hillslope 

Drainage area   (   L
2 

Based on the DEM 

Total relief   (   L Based on the DEM 

Channel length    (   L Based on the DEM 

Average Hillslope slope   (   L/L Based on the DEM 

Curvature  (    (    (    Based on the DEM 

Maximum water table        (   L Based on the DEM 

Manning’s coefficient  (    Based on the DEM and land cover 

Soil 

Storage water potential 
(virtual distance to the 
bedrock) 

  (   L Based on soil datasets or SCS 
method 

Total soil water volume 
potential 

  (   L3 A function of   (   and   (   

Hydraulic conductivity     (   L/T Based on soil datasets or SCS 
method 

Unsaturated hydraulic 
conductivity 

      (   L/T Based on soil datasets and 
pedotransfer functions or SCS 
method 

Soil constant   (    Based on soil datasets  

Channel  

Velocity equation parameters           Based on USGS hydraulic 
measurements 

Channel scale dependent 
constant 

 
 (   

 Based on velocity parameters and 
channel properties 

Dynamic variables Symbol Units Inference method 

Impermeable area   (     L2 Based on hillslope curvature and 
water table 

Permeable area   (     L2 Based on hillslope curvature and 
water table 

Average slope of the 
impermeable area 

   (     L/L Based on water table and hillslope 
geometry 

Volume of the saturated soil       (     L3 Based on impermeable area 
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Table II-2 Continued 

Parameter Symbol Units Inference method 

Volume of water in the 
unsaturated soil layer 

        (     L3 A function of permeable area and 
soil volumetric moisture 

Volume of the unsaturated 
soil layer 

        (     L3 A function of permeable area  

Deficit of water in the soil      (      A function of soil volumetric 
moisture 

Overland flow velocity   (     L/T Based on Manning equation and is 
a function of hillslope slope, 
Manning coefficient, and surface 
storage  

Forcing Symbol Units Inference method 

Precipitation   (     L/T Radar/satellite rainfall maps 

Potential Evaporation     (     L/T Potential evapotranspiration maps 
(MOD16, or based on land surface 
models)  

Snow   (     L/T Snow melt maps based (based on 
snow water equivalent or land 
surface models) 

Fluxes Symbol Units Inference method 

Discharge from upstream     (     L/T Model output  

Infiltration    (     L/T Based on soil deficit and surface 
storage 

Overland flow      (     L/T A function of surface storage and 
overland flow velocity 

Percolation     (     L/T A function of permeable area and 
infiltration rate 

Baseflow      L/T A function of soil properties and 
water table 

Evaporation from the surface   (     L/T A function of potential 
evapotranspiration and water 
surface 

Evaporation from the 
unsaturated soil layer 

      (     L/T A function of potential 
evapotranspiration and soil 
volumetric moisture 

Evaporation from the 
saturated soil layer 

    (     L/T A function of potential 
evapotranspiration impermeable 
area 

State variables Symbol Units Inference method 
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Table II-2 Continued 

Channel discharge  (     L3/T Model output 

Surface storage   (     L Model output 

Water table     (     L Model output 

Soil volumetric moisture  (     L3/ L3 Model output 
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Figure II-1. Hydrological processes simulated by CUENCAS. Green box indicated the 
processes that were developed in this thesis  

 

Figure II-2. Schematic representation of the scales simulated by the hydrological model: 
from local (hillslope) to Watershed scale (Cedar River basin)  
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Figure II-3. Schematic representation of the hillslope and channel physical properties and 
fluxes. The figure on the top (a) presents the fluxes between the hillslope 
surface and soil and the channel.  The figures in the bottom presents a convex 
(b.1) and a concave (b.2) and their main physical properties. 
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Figure II-4. Soil properties for the study area. The maps in the top present SSURGO data 
that were used for the simulations presented in Chapter III. On the left I 
present saturated hydraulic conductivity (m/s) and on right available water 
capacity of sol (cm/150 cm of soil).  On the bottom I present data provided by 
the Iowa Geological Survey, DNR.  Bedrock surface elevation (ft) is 
presented on the left, and soils requiring tile drainage for full productivity on 
the right.  
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CHAPTER III MODEL APPLICATION  

Introduction 

In this thesis, I developed a calibration-free hydrological model that allows us to 

isolate uncertainties due to parameter estimation and input.  To use this model to compare 

different datasets, I first needed to demonstrate the model’s ability to mimic the dominant 

processes of hydrologic response to rainfall.  In this section, I apply the model to simulate 

real events for the Cedar River, Iowa River, and Turkey River basins and a large number 

of streamflow sites covering a large range of drainage areas and different climatological 

conditions during the period of 2002 to 2009.  I demonstrate the model’s capability to 

predict floods across different scales and discuss the model’s limitations and components 

that need improvement. 

Once I demonstrate the model’s ability to represent flood events, I use the model 

to simulate synthetic rainfall/flood events.  The goal is to demonstrate the value of a 

multi-scale framework and to show why calibration based on a single streamflow site 

does not guarantee that physical processes are being correctly represented across scales.  

I then repeat this exercise using real events for the Cedar and Iowa Rivers.  I 

adopt very simple model configurations to simulate these events.  I manually calibrated a 

single parameter of the hydrological model to obtain good matching between simulated 

and observed streamflow for a specific hydrological event and site in the watershed and 

then extrapolatedthis parameter to simulate streamflow for the following cases: (1) other 

sites in the same basin area with different scales, (2) sites with similar hydrological 

conditions and similar scales, and (3) the same site, but for a different climatological 

condition.  This exercise demonstrates that even if a very simple and unrealistic model is 

used, I can achieve reasonable results for the simulation of streamflow for a single site 

and event if parameters are calibrated.  However, the calibrated parameters cannot be 

extrapolated for different events or sites.  
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Model results 

In this section, I present results of the simulations performed with the model 

described in Chapter 2.  These results were obtained with the most complete version of 

the model (model version 6, Table II-1), and parameters were estimated based on the 

different datasets listed in Table II-2.  The model includes the following processes: space-

time rainfall and runoff generation processes, hillslope transport, soil dynamics, channel 

transport, and evapotranspiration.  

I validated the model by comparing model results with observed streamflow data 

and simulated streamflow generated by a semi-distributed version of the SAC-SMA.  

Since 1960, the Sacramento soil moisture accounting model (Burnash, 1995) has been 

used by most of the NWS River Forecast Centers as the main flood prediction model 

(Welles et al., 2007).  The model is classified as deterministic, continuous, and non-

linear.  SAC-SMA contains parameters that describe the rainfall-runoff and evaporation 

dynamics as well as parameters that describe channel flow transport between two sub-

basins (Ajami et al., 2004).  In the semi-distributed version of SAC-SMS, for which 

results are presented here, one set of parameters is calibrated for each sub-basin using the 

6-hour mean areal precipitation (MAP) products produced by the National Weather 

Service (Johnson et al., 1999).  If the kinematic wave method is used, the model uses 

fourteen parameters to describe the rainfall-runoff processes at the watershed scale and 

two parameters to describe channel routing.  

Results for different basins and years are presented in Figure III-1 and Figure 

III-2.  The number of sites analyzed for each year depends on the availability of 

streamflow data for that year.  For 2008, for example, 11 sites were in operation for the 

Cedar River, 12 for the Iowa River, and 4 for the Turkey River.  Therefore, for 2008, 

results are presented for a total of 27 sites.  For each site, I included observed streamflow 

(dark blue), streamflow simulated by CUENCAS (gray), and streamflow simulated by the 

Sacramento Soil Moisture Accounting (SAC-SMA) model (light blue).  I normalize the 
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discharge by the mean annual flood that is used as an approximation for the bankfull 

discharge (red line) (Leopold et al., 1964).  I calculate the mean annual flood as a 

function of drainage area using USGS historical data for the Cedar and Iowa Rivers.  

Values above this line approximate flow levels above the riverbank, characterizing a 

flood event.  The site number (refer to the map presented in Figure 1-1 for site location) 

and the area of each site are shown in the left corner, and goodness-of-fit statistics for 

both models are presented in the right corner.  In the last plot of each figure, I include 

simulated and observed accumulated actual evapotranspiration.  Observed 

evapotranspiration is presented in dark blue and was calculated based on the MODIS-16 

evapotranspiration product that was produced entirely from remotely sensed information.  

The value plotted represents the basin average accumulated actual evapotranspiration in 

mm.  Accumulated values of simulated actual evapotranspiration for different hillslopes 

are presented in gray.   

The comparison of CUENCAS and SAC-SMS model results was introduced in 

this study since I found it difficult to properly judge the model’s results based solely on 

observed streamflow data.  First, the time series of observed streamflow had many 

missing points, which introduced bias into the estimation of traditional goodness-of-fit 

statistics.  Moreover, streamflow observed time series are subject to large uncertainties 

due to instrument errors and limitations, rating curve extrapolation, and hysteresis.  I 

chose the SAC-SMS semi-distributed model for the comparison since it has been used for 

operational forecasts for more than 60 years.  Also, results from the SAC-SMS were used 

as criteria to evaluate the models’ performances during the Distributed Model 

Intercomparison Project - 1 (DMIP-1) (Smith et al., 2004).  One of the main conclusions 

of DMIP-1 was that in most cases, the lumped model outperformed the distributed model.  

Another relevant conclusion was that, “gains from calibration indicate that determining 

reasonable a priori parameters directly from physical characteristics of a watershed is 

generally a more difficult problem than defining reasonable parameters for a conceptual 
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lumped model through calibration” (Reed et al, 2004).  The results from SAC-SMS were 

provided by Prof Allen Bradley.   

I first show results for the year for which values above the mean annual flood 

were observed for some of the streamflow sites, characterizing a flood event.  I start with 

the extreme flood event that occurred in 2008.  Figure III-1, Figure III-2, and Error! 

Reference source not found. present results for the Cedar River, Iowa River and Turkey 

River sites for 2008.  Note that for some sites in the Iowa River and Cedar River basins 

and all the sites in the Turkey River basin, simulations for the SAC-SMS model were not 

included since they were not available.  In this case, I included a missing value (-9.0) in 

the statistics for SAC-SMS.  For many of the sites, CUENCAS and SAC-SMS models 

perform in a very similar way.  Both models were able to capture peak flow and the time 

to peak for practically all the sites in the Cedar River and Turkey River basins.  For the 

Iowa River basin, for which streamflow sites with smaller drainage area are available, 

CUENCAS performed better in many cases.  Neither CUENCAS nor SAC-SMS were 

able to reproduce the hydrograph for the Marengo site that represents the outlet of the 

simulated part of the Iowa River basin.  The difficulty in simulating flow for this site 

probably arises from flow transport effects that are not accounted for by the kinematic 

wave approximation used in the model.  However, CUENCAS correctly predicted the 

peak, while SAC-SMS underestimated the peak flow at this site. 

Results for 2004 are presented in Figure III-4, Figure III-5, and Error! Reference 

source not found. for sites in the Cedar River, Iowa River and Turkey River basins, 

respectively.  For the Cedar River, results for both models were similar, while for the 

Iowa River, CUENCAS underestimated the streamflow response for the majority of the 

sites.  A primary cause could be error in the Stage IV data, since streamflow was 

underestimated across the basin.  For the Turkey River basin, CUENCAS reproduced the 

2004 hydrographs very well.   
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Note that I correctly simulated the time to peak across multiple scales and for all 

the studied watersheds using the river propagation method proposed by Mantilla (2007).  

However, I had to apply am advection correction factor to the parameters that were 

estimated based on the USGS hydraulic measurements data.  The need for the correction 

arises from basic assumptions adopted by the author to derive the formulation.  A more 

detailed explanation of this is presented in the Appendix A.  

In Figure III-7 and Figure III-8, I present results for a dry year (2002) and for a 

relatively wet year (2003) in which discharge was close to but did not exceed the mean 

annual flood.  As can be seen for these two cases, the model does not perform as well for 

dry conditions.  Note that for the year 2002, SAC-SMS also did not perform well.  For 

the year 2003, SAC-SMS performed better than CUENCAS.  Note that the SAC-SMS 

model has 16 calibrated parameters to represent rainfall –runoff transformation, so it is 

probable that it would capture highly non-linear dynamics during dry events better than 

CUENCAS, which presents a simplified representation of soil dynamics with a very 

parsimonious formulation (3 parameters).  This means that the current version of the 

model cannot capture highly non-linear processes that occurred during dry conditions.  

This is probably because of the simplified representations adopted by soil and 

evapotranspiration processes.  For example, for this specific study area, tiling systems 

might interfere with the accurate representation of soil dynamics.  In a long period 

simulation, as it is the case presented here (7 month simulations instead of event-based 

simulations), bias in representing these two processes accumulates in time and strongly 

affects soil moisture conditions and, consequently, streamflow generation.  

Difficulties simulating dry periods are very common in hydrological modeling 

(e.g. Liden and Harlin, 2000 and Hunukumbura et al, 2011).  Two main reasons are often 

mentioned as the causes for poor model performance for dry periods: (1) lack of 

consideration of surface water–groundwater interactions (Anderson et al., 2004; Hughes, 

2004; Fleckenstein et al., 2006; Herron and Croke, 2009) and (2) the existence of 
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additional water pathways in the soil matrix that are hard to simulate and quantify (Lang 

et al., 2008; Hunukumbura et al., 2011; Kim et al., 2011; Staudinger et al., 2011).  These 

aspects should constitute the subject of future work. 

Figure III-9 presents peak flow scaling for the Cedar River basin for the years 

2002 to 2009.  In Figure III-10, I included the peak flow scaling for the Iowa River and 

Turkey River for 2004 and 2008.  In this figure, blue dots are observed peak flow and 

dark gray and light blue dots are simulated peak flow for CUENCAS and SAC-SMA, 

respectively.  In orange I present the mean annual flow values across scales.  The red line 

presents the scaling of peak flow fitting line obtained through non-parametric regression.  

The light gray dots are peak flow simulated by CUENCAS for all the links in the basin.  

Even though CUENCAS does not satisfactorily capture hydrographs’ shapes for dry 

climatological conditions, it does capture reasonably well the scaling behavior of peak 

flow for all of the simulated years.  For 2004 and 2008, (flood) peak flow scaling is 

captured very effectively.  It is important to note that the model developed in this work 

was initially conceptualized to simulate flood events.  A model is considered efficient for 

flood prediction if it does not provide false alarms (predict floods when they have not 

occurred) or miss forecasts (does not predict floods that occurred) and if it can accurately 

predict peak flow and time to peak during flood events.  I can analyze these criteria by 

considering the scaling plots.  For example, in the case of a flood event, observed (dark 

blue dots) peak flow values are above the orange line.  If, in this case, simulated (light 

blue or gray) values are below the same line, it characterizes a flood warning that should 

have been issued but was not during a real flood event.  The opposite case would be when 

observed values are below the orange line, so flow is below bankfull level, but simulated 

values are above the same line.  In this case a warning was issued in the case that a flood 

event did not really occur.  All the criteria mentioned before are reached for almost all 

sites and years. 
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Why should we avoid calibration? 

Synthetic rainfall simulations 

In this section, I present a simulation study to demonstrate the value of evaluating 

model results at multiple scales rather than calibrating model parameters for a unique site 

in the watershed.  I show that the peak flow observed in a single site can be captured 

through the calibration of a single parameter.  However, this procedure does not 

guarantee that peak flows are correctly simulated across scales.  I use different model 

configurations to demonstrate the impact that adding different processes (e.g. hillslope 

delay) has on peak flow scaling.    

For this exercise, I adopted synthetic, spatially uniform rainfall of varying total 

accumulated rainfall (60, and 120 mm) and a fixed duration equal to 60 minutes, resulting 

in different rainfall intensities (60, and 120mm/h).  Simulations are performed using three 

different models: 

 Model 1 (model 1 in Table II-1):  the model configuration accounts for runoff 

generation and transport through the river network.  A constant runoff coefficient 

and channel velocity was adopted throughout the study area and for the whole 

duration of the rainfall event.  Runoff coefficient is equal to 1.0 and different lines 

in the plot represent simulations obtained with different flow velocities (from 0.2, 

to 1.00 m/s).    

 Model 2 (model 2 in Table II-1): in this version of the model, I added hillslope-

delayed that was simulated by a linear reservoir with constant velocity (0.01m/s) 

and adopted the  same scenarios specified for model 1 in terms of the runoff 

coefficient and channel velocity. 

 Model 3 (model 3 in Table II-1): in this version of the model, channel and 

hillslope velocity are represented by non-linear function.  In the case of the 

channel, velocity depends on the drainage area and on the discharge.  In the case 
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of the hillslope velocity depends on the storage on the surface, the land cover 

type, and on the hillslope slope.   I adopted 4 different velocities for the channel, 

with vo in the non-linear velocity equation varying from 0.4 to 0.8. 

 Model 4 (model 6 in Table II-1): this version of the model corresponds to the 

version used to simulate the real events whose results were presented in the 

beginning of the chapter.  This is the most complex version of the models which 

parameters are estimated based on data.  Since I have demonstrated the model’s 

ability to simulate flood events, I assumed that results obtained by this model are 

close to reality.  For this simulation study, I used the parameters estimated for the 

Cedar River basin and set initial soil condition to 0.5.  This scenario is represented 

in the figure by the black line that was estimated based on the gray dots.  

The goal of this experiment is to illustrate the range of simulated values obtained 

through modifying just one of the model parameters (channel velocity).  The simulation 

results are shown in Figure III-11.  I can see that peak flow scaling changes significantly 

from model to model.  Results obtained by model 3 are considered as a reference close to 

the actual basin response, since I have demonstrated the model’s ability to simulate flood 

events across scales.  The lack of hillslope delay in model 1 causes overestimation of 

peak flow for small basins, and the effects decrease as basin scale increases.  For model 

2, I adopted a very low constant hillslope velocity what result in underestimation of peak 

flow for small scales.   

Now let us suppose I would like to calibrate model 1 or 2 based solely on the 

observed discharge for a single streamflow site and, consequently, a single point in the 

peak flow-scaling plot, I could easily manipulate one parameter (e.g. for the different 

results in Figure III-11 I manipulated channel velocity) to match the observed peak flow 

at this specific site.  The calibration of a single parameter would allow us to match 

exactly the peak flow discharge for this specific site; however, the difference in slope 

among different models demonstrates that this procedure does not guarantee that peak 
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flow scaling is being correctly simulated across all basin areas.  It also does not guarantee 

that the good match is achieved for the right reasons.  For example, if I kept the runoff 

coefficient equal to one and chose to calibrate channel velocity, I would actually obtain a 

velocity that is lower than the real one to compensate for the wrong runoff coefficient.  In 

this sense, calibration based on just one streamflow site is a meaningless exercise that 

does not provide any information about physical processes.  

Now, let us consider that I have streamflow observations for two sites in the 

basin, with drainage areas of around 10 km2 and 1000 km2.  In this case, the modification 

of just one parameter would probably not allow the match observed peak flow for both 

sites, since in this case I would also have to capture the slope of the peak flow scaling 

relationship.   

It is interesting to notice the effect that rainfall intensity has on the range of 

possible simulated values.  If I compare the less (plot in the left corner) and more (plot in 

the right corner) intense rainfall scenarios, I conclude that variability among the different 

models for large basins decreases as the amount of water introduced into the basin 

increases.  The model configuration that best matches the reference result (model 4) also 

changes across scenarios.  This demonstrates the importance of introducing non-linear 

effects, even though models with constant velocities are sometimes able to reproduce 

hydrographs at specific locations and for specific events.  

This exercise demonstrates the diagnostic framework proposed by the geophysical 

theory of floods.  As indicated by Gupta et al. (2010), the use of highly parameterized 

models and calibration complicates the adoption of this diagnostic framework since it 

prevents the identification of model, data, or parameter uncertainty.   

Simulation using real rainfall event 

In this section, I use real events for the study area to verify the concepts 

demonstrated in the previous section.  In this exercise, I apply model 2 that accounts for 
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constant runoff coefficient, channel velocity, and hillslope velocity and force the model 

with Stage IV rainfall data.  I fixed channel velocity equal to 1.0 m/s and hillslope 

velocity equal to 0.01m/s and manually calibrated the runoff coefficient for a specific site 

and year.  I used the same years for which I presented results from model 6 (Table II-1) 

in the first part of this chapter.  The goal is to demonstrate the variability of behavior 

observed during these years.  I then extrapolate this parameter for other sites in the same 

watershed, simulating the parameter regionalization method.  Next, I apply the 

determined parameters to simulate streamflow for the same site, but for different years, in 

this case simulating the practice of model validation or forecast.  The results of this 

experiment are presented in Figure III-12 and Figure III-13.   

Figure III-12 presents the case for which I use a wet year (2008) for calibration.  I 

calibrate model parameters to match streamflow for Wolf Creek, near the Dysart site at 

the Cedar River, with a drainage area equal to 774 km2.  In Figure III-13, gray lines 

represent simulated values and blue lines reflect observed values.  I kept the results 

obtained by SAC-SMS for reference.  The calibrated runoff coefficient in this case is 

equal to 0.8.  The model did not perform as well when the same parameter was applied to 

different sites in the same basin area and period.  For a site with a similar basin area 

(Beaver Creek at New Hartford, 898 km2), peak discharge was underestimated by 50%, 

and for the Cedar River basin, the first peak was overestimated and I did not capture the 

timing and shape of the hydrograph.  Even worse results were obtained when the same 

parameter was used to simulate 2002 and 2003, which correspond to very dry and dry 

years, respectively.  In both cases, discharge for the same site was strongly overestimated 

during the entire period.  For 2004, which is also a wet year, I obtained reasonable fit for 

the same site but strongly overestimated discharge for Cedar Rapids.   

Figure III-13 presents the same exercise for a dry year (2003).  I calibrated 

streamflow for the Little Cedar River, near Ionia with a drainage area equal to 792 km2, 

obtaining an optimal runoff coefficient equal to 0.2.  Even though the hydrograph timing 
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for the small-scale sites seems to be reasonably captured by the model, channel velocity 

seems to be too fast for this event since the simulated peak occurs before the observed 

one for the large-scale basins.  This is due to the use of a constant channel velocity for all 

flow conditions (low or high) and indicates the need for a non-linear relationship between 

velocity and channel discharge.  I then applied the runoff coefficient equal to 0.2 to 

simulate discharge for the same site for the year 2002 (dry).  Even with a very low runoff 

coefficient, I overestimated discharge for this year.  This is probably due to large 

velocities of propagation for the amount of water in the hillslope and channels.  For 2004 

and 2008, I strongly underestimated discharge, with the exception of one site in the Cedar 

River basin, for which a reasonable match was obtained.  This demonstrates the high 

variability of hydrological response, not just for different climatological conditions (year 

to year) but also for different regions in the basin during the same year.  

Major model limitations 

In this work, I focused on hydrological processes that play an important role in 

flood generation and that can be parameterized using spatially distributed information 

about the watershed, especially the ones provided by remote sensing.  Our goal was to 

investigate how well floods can be predicted using information from space.  There are 

other hydrological processes that were not included in the presented version of the model 

that can potentially affect flood generation, and their inclusion could potentially improve 

model results.  Future extensions of this work should consider the inclusion of some of 

these processes.  This section presents a discussion of the main weakness of the current 

formulation of the model.  Future extension of this work should focus on improving the 

model components discussed here.   

The most relevant basin property that was not explicitly included in the model 

formulation is the type of vegetation and how it affects runoff generation and propagation 

through the hillslope.  The only consideration in the current version of the model is 
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related to the general land cover class, as proposed by the National Land Cover Database 

(NLCD).  Due to agricultural practices in Iowa, vegetation changes abruptly from May, 

the beginning of the planting season, to September, when the harvest usually occurs 

(National Agricultural Statistics Service. 2007).  Vegetation indices (e.g. leaf area index, 

normalized difference vegetation index) are provided by remote sensing and can be used 

to parameterize these processes.  

Vegetation interferes with the balance of water on the surface (interception), the 

resistance to surface runoff (roughness of the surface), and transpiration patterns.  The 

first two processes have a more direct effect on floods.  Breuer et al. (2003) define 

vegetation interception capacity as the maximum amount of water left on the canopy at 

the end of a precipitation event under zero evaporation conditions and after dripping has 

stopped.  Therefore, this volume of water does not contribute to runoff or infiltration.  

The same authors provide a review of studies that attempts to estimate vegetation 

interception capacity and, based on this review, propose values for different types of 

plants and vegetation density.  Vegetation also affects surface roughness, slowing down 

and reorganizing overland flow.  Jin and Romkens (2000) demonstrate that overland flow 

in non-submerged vegetative can be described by the Petryk and Bosmajian’s modified 

Manning’s formula with a variable roughness coefficient.  In this case, resistance due to 

vegetation is related to vegetation density and flow depth.  

During the beginning of model development, I used a simplified representation of 

the soil dynamics.  However, the validation of the model with real data for very dry 

periods demonstrated that even though the soil model is able to represent soil dynamics 

during very wet periods, it does not capture the whole complexity of soil dynamics 

during dry periods.  In the current version of the model, I adopt a simplified 

conceptualization of the soil properties based on the definition of an average hydraulic 

conductivity and average soil properties for the hillslope.  In this case soil properties are 

considered to be constant for the entire vertical soil profile.  I also do not account for 
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different soil conductivities that arise from the existence of macropores in the soil.  For 

future work, I propose to implement a dual-permeability model that accounts for fast 

flow, due to macropores and fractures effects, and a slow flow, that happens in the soil 

matrix.  Examples of this type of model were presented by Durner (1994), Mohanty and 

Bowman (1997), and Mohanty (2007).  A review of model applications for structured 

soils was presented by Kohne et al. (2009).  I also recommend considering the inclusion 

of soil dynamics that result in the installation of tiling systems.  The main deterrent to 

including complexities to the soil dynamics is the lack of information.  For the tiling 

systems, for example, many of them were installed many years ago, and no official 

register of their installation is available.  Even for the places for which a tiling map is 

available, due to the lack of maintenance, it is hard to determine whether the system is 

still working properly.  Therefore, to test these components, a small scale study that 

focuses on a hillslope for which information is available would be the ideal setup for 

testing more complex conceptualization of the soil dynamics  

The current version of the model also presents a very simple representation of 

snow processes.  I neglected infiltration, sublimation, and all the snow-melt runoffs to the 

river.  A better representation of how much of the snow-melt infiltrates into the soil 

would be appropriate, but it requires such information as snow cover and frozen soil 

properties.  The next step would be the inclusion of a simplified model to represent 

infiltration under limited conditions imposed by frozen soils.  Different snow-melt 

infiltration information is available, and a good start to improving these model 

components is the implementation of the model proposed by Gray et al. (2001) since it 

was developed to be applied at the hillslope scale. 

The last model component that requires special attention is evapotranspiration.  

Even though evapotranspiration is not a relevant process for flooding in event-based 

simulations, it controls soil moisture states for longer period simulations.  I opted to use 

available datasets of potential evapotranspiration instead of developing a component in 
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the model that would estimate it internally.  Once potential evapotranspiration is known, I 

estimate evaporation based on the available water in the system.  In the model version 

presented in this work, I use conceptual equations to estimate how much water evaporates 

from the soil.  However, water from the soil can be removed by plant transpiration.  

Estimation of plant transpiration is a complex process that depends on vegetation 

stomatal conductance, which is sensitive to diurnal changes in absorbed 

photosynthetically active radiation, vapor pressure deficit, leaf temperature, hydraulic 

conductance within the plant, and soil moisture near the roots (Mu et al., 2007).  Since 

the contribution of evapotranspiration is only significant for long-term simulations, I 

recommend data assimilation to correct for errors introduced by the simple model 

conceptualization.  Implementing a complex evapotranspiration model would 

significantly increase data requirements and model running-time.  I will demonstrate 

models sensitivity to evapotranspiration in Chapter 8.   

Conclusions 

Before using a model to evaluate the potential of different datasets for flood 

prediction, the model’s ability to simulate real flood events has to be demonstrated.  In 

this chapter, I present results for the Cedar River, Iowa River, and Turkey River basins.   

I began by presenting results for the 2008 flood event, and I demonstrated that the model 

performs well when simulating high-flow conditions across scales for all basins adopted 

in this study.  I compared the results obtained by CUENCAS with a well-established 

hydrological model (SAC-SMS) that has been used for operational flood prediction by 

the National Weather Service for more than 60 years.  I concluded that both models 

performed similarly for flood events. 

I then applied the model to simulate flows for a very dry (2002) and a relatively 

dry year (2003).  In this case, the model did not perform as well due to the high-

nonlinearity of soil and evapotranspiration dynamics.  The model developed in this work 
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adopts simplified conceptualization of these processes, since the main goal was to be able 

to estimate model parameters based on data.  Therefore, model complexity is tied to data 

availability.  Future work should focus on how to improve model conceptualization of 

these processes for dry periods.  It is important to point out that degraded model 

performance during very dry periods is a very common issue in hydrological modeling.  

I then presented a study based on synthetic rainfall to illustrate the importance of 

a multi-scale framework in hydrological modeling.  This exercise demonstrated that even 

simplistic models can be calibrated to simulate peak flow for one streamflow site and 

under specific hydrological conditions.  However, the good match between observed and 

simulated values does not guarantee that the model correctly represents hydrological 

processes across scales.  I used the same real events that I used to verify the model’s skill 

in the first part of this chapter to demonstrate the large variability of hydrological 

response across different years and different sites.  I confirmed the experiment realized 

with synthetic rainfall using real events and calibrated the runoff coefficient for a single 

site.  The regionalization or extrapolation of this parameter for different sites and 

hydrological conditions resulted in poor simulation of hydrological response.  This 

exercise also demonstrates that there is no direct conversion of rainfall into runoff and 

that other hydrological variables should be included in the model formulations.   In the 

complete version of the model, for example, the response of the basin to a rainfall event 

will depend on moisture initial condition in the soil and on the surface, soil and land 

surface properties, and space-time variability of rainfall. 
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Table III-1. Dataset used in the simulations 

Physical processes and 
properties 

Datasets 

Input 
Rainfall Radar Stage IV - NWS 

(ΔT=1 hour and ΔS=0.05°, almost real-time) 
Potential 
Evapotranspiration 

PE from North American Regional Reanalysis - NLDAS-2 
Model Input (ΔT=1 hour; ΔS=0.125°~13km) 

Parameterization 
DEM NED - ΔS=90 meters  

 
Hydraulic 
Measurements 

USGS hydraulic measurements  

Soil properties  SURGO - ΔS= polygons with 1 to ten acres (~0.05km2) size 
map delineation 

Land cover National Land Cover Database (NLCD) - ΔS=30 meters -2001 
Initial condition 
Soil moisture (initial 
condition) 

Total soil column wetness (0-200 cm) - NLDAS-2 Model 
Output (ΔT=1 hour; ΔS=0.125°~13km) 

Validation 
Streamflow  USGS streamflow measurements for a total of 25 sites in the 

study area 
(ΔT=1/4 or 1 hour) 

Streamflow Simulated streamflow – SAC model 
Evapotranspiration MODIS Evapotranspiration Dataset (MOD 16) (ΔT=8 days; 

ΔS=0.016°~1km) 
(available from 2001 – not available in real time) 

*ΔS – spatial resolution in minutes (‘), arc-seconds (“), degrees (°), meters (m), or 
kilometers (km) 

**ΔT – temporal resolution in minutes, hours, days, or years 
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Figure III-1. Model results for 2008, Cedar River sites.  Discharge is normalized by the 
mean annual flood.  Dark blue lines are observed; gray lines are simulated by 
CUENCAS; and light blue lines are simulated by SAC-SMS.  The numbers on 
the left indicate the site number (refer to Figure 1-1) and the basin drainage 
area.  The numbers on the right are the statistics for CUENCAS and SAC-
SMS (Nash coefficient, correlation coefficient).  The last plot presents 
simulated (gray lines) and observed (blue line, based on MODIS 16) 
evapotranspiration results for the year 2008. 
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Figure III-2. Simulation of 2008 flood event for Iowa River sites. Gray line is simulated 
by CUENCAS, light blue is simulated by SAC-SMS, and dark blue line is 
observed. 
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Figure III-3. Simulation of 2008 flood event for Turkey River sites. Gray line is 
simulated by CUENCAS, light blue is simulated by SAC-SMS, and dark blue 
line is observed. 
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Figure III-4. Simulation of 2004 flood event for Cedar River sites. Gray line is simulated 
by CUENCAS, light blue is simulated by SAC-SMS, and dark blue line is 
observed. 
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Figure III-5. Simulation of 2004 flood event for Iowa River sites. Gray line is simulated 
by CUENCAS, light blue is simulated by SAC-SMS, and dark blue line is 
observed. 
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Figure III-6. Simulation of 2004 flood event for Turkey River sites. Gray line is 
simulated by CUENCAS, light blue is simulated by SAC-SMS, and dark blue 
line is observed. 
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Figure III-7. Simulation of 2002 streamflow for Cedar River sites. Gray line is simulated 
by CUENCAS, light blue is simulated by SAC-SMS, and dark blue line is 
observed. 
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Figure III-8. Simulation of 2003 streamflow for Cedar River sites. Gray line is simulated 
by CUENCAS, light blue is simulated by SAC-SMS, and dark blue line is 
observed. 
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Figure III-9. Observed (dark blue dots) peak flow and peak flow predicted by CUENCAS 
(gray) and SAC-SMS (light blue, when available) for the Cedar River basin 
for 2002 to 2009.  The red line is a non-parametric regression line that 
estimates the expected value of peak flow as a function of area.  The orange 
line is the mean annual flow.  
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Figure III-10. Same as Figure 1-12, but for years 2004 and 2008 for the Iowa and Turkey 
Rivers.  
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Figure III-11. Simulation results based on different rainfall total accumulations (60 and 
120mm) with fixed duration (60 minutes).  The different lines represent 
simulations with different channel velocities.  The black line represents the 
most complete version of the hydrological model that was demonstrated to 
capture peak flow scaling for real events.  Model specifications are specified 
in the top of each plot. Model complexity increases from the top to bottom. 
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Figure III-12. Simulated streamflow (dark blue) based on the following parameters: 0.8 
runoff coefficient, 1.0 m/s channel velocity, and 0.01 m/s hillslope velocity.  
Observed values are presented in gray, and simulated values based on SAC-
SMS, used as a reference, are presented in light blue.  I present results for 3 
sites (Wolf Creek, Beaver Creek, and Cedar River) for 2008, 1 site (Wolf 
Creek) for 2002, 1 site (Wolf Creek) for 2003, and 2 sites (Wolf Creek and 
Cedar River) for 2004.  
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Figure III-13. Simulated streamflow (dark blue) based on the following parameters: 0.2 
runoff coefficient, 1.0 m/s channel velocity, and 0.01 m/s hillslope velocity.  
Observed values are presented in gray, and simulated values based on SAC-
SMS, used as a reference, are presented in light blue.  I present results for 3 
sites (Little Cedar River, Wolf Creek, and Cedar River) for 2003, 2 sites 
(Little Cedar River and Cedar Rapids) for 2002, one site (Little Cedar River) 
for 2004, and 3 sites (Little Cedar River, Winnebago River, and Cedar River) 
for 2008.  
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CHAPTER IV  

IMPACT OF DEM SOURCE, RESOLUTION, AND NETWORK PRUNING ON THE 

CHARACTERIZATION OF THE RIVER NETWORK AND ON ESTIMATION OF 

PEAK FLOW MAGNITUDE AND TIMING ACROSS SCALES 

Introduction 

One of the major challenges for the hydrological community is the development 

of near-global flood forecasting systems based on remote sensing data (Lettenmaier and 

De Roo, 2006; Wood et al., 2011).  DEMs are the critical information for the 

implementation of these systems, since it provides a numerical representation of the land 

surface topography.  DEMs are used to extract the river network, outline model control 

volumes (e.g grid, sub-watersheds, hillslopes), and to calculate land surface slopes, which 

controls runoff transport. While for some regions of the world different DEM datasets are 

available, with varying spatial resolution, and accuracy (e.g. USA), other regions rely 

entirely on satellite-based data (e.g. some regions in Africa, South America, and Asia).  

Satellite-based DEMs present coarse spatial resolution and low vertical and horizontal 

accuracy (Hirt et al 2010; Slater et al 2011, Smith and Berry 2011).  Consequently, it is 

important to understand the effects of these uncertainties on peak flow simulation.  The 

main goal of this study is to diagnose the manner in which DEM uncertainties affects 

river network extraction and peak flow simulation across scales.   

Two remote sensing missions provide DEM with near-global coverage (including 

the most populated regions of the world): the Shuttle Radar Topography Mission (SRTM: 

Farr et al. 2007) and the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER: ASTER validation team, 2011).  Both datasets are available online 

at no cost, at the spatial resolution of 3 arc seconds (~90 m) for SRTM and 1 arc second 

(~30 m) for ASTER.  For USA, other sources of DEM, with higher spatial resolution and 

higher vertical and horizontal accuracy, are also available.  The US Geological Service 
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(USGS) provides the National Elevation Dataset (NED), with 1/9 (for some regions), 1/3, 

and 1 arc seconds, ~3, 10, and ~30 respectively.  NED is built from stereoscopic models 

and is frequently updated though the merging of higher resolution data.  For specific 

regions, LIDAR data is also available.  Table 1 presents a list with some of the available 

DEMs datasets and their main characteristics. Maune (2007) presents a comprehensive 

review about each dataset.   

In this introduction I discuss previous studies that investigate the role of DEM on 

hydrological modeling.  Various studies have demonstrated that DEM features, especially 

resolution and accuracy, affect landscape characterization and hydrological modeling 

(Zhang and Montgomery, 1994; Thompson et al., 2001; Hancock and Evans, 2006; 

Martinez et al., 2010).  Zhang et al. (1999) compared landscape slopes calculated based 

on 20 to 2,000 m resolution DEMs and concluded that slope varies inversely with the 

DEM grid size.  In the same line, Zhang and Montgomery (1994) concluded that the 

effects of DEM on hydrological simulations are mainly caused by differences in slope, 

and related model-derived quantities obtained using different resolution DEMs (2 to 90 

m).  Quinn et al. (1991) and Parsons et al. (1997) demonstrated the relevance of high-

resolution features for channel and overland–flow routing.  Li and Wong (2010) 

evaluated different DEMs sources and resolution and concluded that coarser data 

resolution does not necessarily lead to poorer characterization of landscape aspects.  

According to the author, slopes estimation changes for different resolution, however 

certain landscape features and characteristics may not be correctly identified or evaluated 

when higher resolution data is used.  Mantilla and Gupta (2005) focus on the properties 

of the network and concluded that a 30 m DEM is sufficient to ensure that the extracted 

network closely corresponds to the network that exists in the actual terrain.  

Although noteworthy literature is available in the subject, no consensus exists in 

terms of the optimal DEM resolution for hydrological simulations.  One of the factors 

causing the lack of consensus is that errors are scale dependent (Endreny and Wood, 
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2000).  All the previously mentioned studies are based on the results for a single 

watershed scale, usually on the order of 0.1-100 km2.  The exception was the study 

developed by Endreny and Wood (2000).  The authors demonstrated the scale-

dependency of errors through the evaluation of the effect of vertical errors on the 

estimation of geomorphological basin properties for micro, meso, and macro-scales, 

defining as having the size domain of approximately 0.5, 5 or more than 5 km 

respectively.  Therefore, to comprehensively investigate how DEM errors affect 

landscape characterization and peak flow simulation a multi-scale approach that covers a 

large range of drainage area is required. 

Another restraint of previous studies is the use of calibration to estimate 

hydrological model parameters.  As demonstrated by Zhang and Montgomery (1994), 

Kenward (2000), Vazquez and Feyen (2007), among others, calibrated parameters are 

DEM dependent since parameter values are adjusted to compensate for uncertainties in 

the dataset used for calibration (Refsgaard, 2004; Ajami et al., 2007).  Those studies 

demonstrated the need for a simulation framework that isolates uncertainties due to 

model structure, parameter estimation and input, allowing an impartial assessment of 

different datasets.    

In this study I adopt a multi-scale physically-based rainfall runoff model that 

simulates response to rainfall forcing at a wide range of scales.  Parameters estimation is 

data-based and I do not adjust (calibrate) parameters to force better agreement with 

observed streamflow.  Since calibration is not required, the framework isolates errors due 

to DEM uncertainties, allowing a fair comparison of different datasets.  I use DEM data 

to decompose the terrain in hillslopes and links, so landscape characterization is affected 

by uncertainty and errors on the elevation data. The model simulates response to rainfall 

forcing for every link in the network, covering a wide range of scales, with the smallest 

being a hillslope scale (~0.01 km2).  This feature allows the investigation of how DEM 

errors affect hydrological prediction across scales.  A similar approach was used by 
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Cunha et al (in preparation) to investigate the impact of radar-rainfall error structure on 

estimated flood magnitude across scales.  

I investigate different aspects that can introduce errors in the characterization of 

the landscape, including DEM accuracy and resolution.  I also investigated the effect of 

pruning small order channels systematically transforming it into hillslopes.  I examine the 

impact of vertical and horizontal accuracy by comparing DEMs from different sources.  

LIDAR and NED DEMs are expected to have considerably smaller errors than the 

satellite-based DEMs (ASTER, and SRTM).  Second, I examine the effect of DEM 

resolution.  As pointed out by Beven (2012), the use of high-resolution data might not be 

necessary, or even recommended, if processes that occurred at scales smaller than the 

model domain are realistically parameterized.  The use of a very high-resolution DEM 

may result in the representation of features that are not relevant for the process being 

modeled (Kienzle, 2004; Lassueur et al., 2006; Liu, 2008).  The use of high-resolution 

DEM also leads to higher computational requirements.  In some cases, the use of higher 

DEM resolution yields only small improvements in terms of accuracy  (Sanders, 2007), 

but considerable increase of computational time.  Moreover, losses in horizontal 

resolution can sometimes introduce considerable gains in vertical accuracy that might be 

essential for hydrological simulations (Endreny and Wood, 2000). 

I also investigate the effects of simplifying the river network.  These 

simplifications are very common in hydrological modeling, since they result in a lower 

number of model units (hillslope or sub-watersheds) for the same area, reducing the 

amount of parameters to be estimated, and the computational time to run the model.  

However, these simplifications impact runoff transport through the watershed.   

Following this introduction, Section 2 offers the description of the different DEM 

databases used in this study.  The description of the study area and hydrological model 

used in this study were previously presented in Chapter 1 and 2, respectively, and will not 

be repeated here.  However, it is important to point out that in this Chapter I analyze only 
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the Cedar and Clear Creek basins.  The analysis using high resolution LIDAR data was 

limited to the Clear Creek basin, since LIDAR data for the whole area was not available 

during the development of this study.  In Section 3, I present methodological aspects of 

this work, focusing on the landscape decomposition method, the hydrological model, and 

the criteria used to compare different DEMs.  Section 4 includes the main results of this 

study.  First I compare hydro-geomorphological properties obtained with different DEMs.  

Second, I present results of hydrological simulations performed with real (Iowa 2008 

event) and synthetic rainfall.  I evaluate different simulations focusing on the scaling 

structure of peak flows.  Section 5 summarizes and concludes the study. 

Rainfall 

For precipitation I use a Hydro-NEXRAD (HN) rainfall product produced based on a 

novel methodology to reduce the effects of relative calibration bias between multiple 

radars covering the same area.  This bias produces an artificial artifact in the radar-

rainfall Stage IV data provided by the National Weather Service (Seo, in preparation).  

The HN product was produced based on the radar Level II data provided by the National 

Climatic Data Center (NCDC) for four WSR-88D radars (The KARX, KDMX, KDVN, 

and KMPX; see Figure 2).  The final radar rainfall product presents 1-hour resolution in 

time, and approximately 4-km resolution in space.  Seo et al (2012, in preparation) 

presents more details about the Stage IV and HN rainfall dataset, the methods used to 

generate the HN product, and the improvements HN led to hydrological simulations.  

Digital elevation models 

For Cedar River basin I compared three sources of information: NED (30 m), 

SRTM (90 m), and ASTER  (30 m).  For detailed characteristics of these datasets see 

Maune (2007).  For Clear Creek I also included high resolution LiDAR (Airborne light 

detection and ranging) data in the analysis.  These datasets are aggregated in space to 

explore the effects of DEMs spatial resolutions.  For Cedar Rapids the NED DEM was 
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aggregated from 30 meters to 90, 120, 150, and 180 meters, while for Clear Creek I 

aggregated the LiDAR data from 1 meter to 5, 10, 20, 30, 60 and 90 meters.   

The LiDAR data used in this work was collected by the Iowa Department of 

Natural Resources (DNR) and is available for free on www.iowadnr.gov.  Even though 

LiDAR data provides highly accurate information for the generation of digital elevation 

model (DEM), effective raw data processing, quality control, and large computational 

requirements add limitations to the use of this data.  For example, the classification of 

LiDAR points into ground and non-ground is a critical and difficult process.  Liu (2008) 

and Meng et al. (2010) presented a review about the main issues related to DEMs 

generation based on LiDAR measurements.  In this study, the highest resolution dataset 

included in this study was the 5 meters DEM.  I opted to aggregate the 1-meter LIDAR 

DEM to 5 meters, since computational requirements to process the 1-meter DEM for the 

study area was too high.  I assume that the 5-meters DEM provides accurate information 

about the geometry of the hillslope, since the smallest hillslopes are in the order of 

0.01km2, what correspond to 400 pixels of the 5-meters resolution DEM. 

Methodology 

Uncertainties on the representation of the landscape propagate through 

hydrological models affecting peak flow simulation.  In this study I investigate how 

degrading DEM information affects the extraction of the main properties of the river 

network, and how these uncertainties propagate through hydrological models affecting 

hydrological predictions.  I focus on three main aspects: DEM source, DEM resolution, 

and river network extraction thresholds.  

In the following sections, I will focus on the description of the three main 

components of this work: (1) the landscape decomposition method; and (2) the criteria 

used to evaluate different DEMs. 
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Landscape decomposition method  

Previous studies have demonstrated the role of the river network for flood 

prediction (Menabde et al., 2001; Gupta, 2004; Mantilla et al., 2006; Mantilla et al. 

2011).  To obtain a truthful representation of the river network I decompose the 

landscape in hillslope and links based on the DEM.  To determine the location of the 

actual river network, a slope-dependent critical support area was used (Mantilla and 

Gupta, 2005).  This decomposition method allows the simulation of hydrological 

processes close to the scales at which they occurred in nature.  At the hillslopes scale I 

parameterize processes that account for partition of rainfall input into surface runoff, 

infiltration, and evapotranspiration.  The river network transports the runoff produced at 

the hillslope scale, aggregating discharge as the water flows to higher order streams.  

It is important to point out the difference between the decomposition method 

applied in this work and the one that decompose the terrain in square grids, commonly 

adopted in hydrological models (see a list of model in Kampf, 2007).  Organized squared 

pixels are not truthful representation of the domains in which hydrological processes 

occurred in nature (Dehotin and Braud, 2008).  A correct representation of the river 

network using square-grid requires the use of high-resolution DEM (in the order of the 

width of first order streams), what is not feasible due to the high computational 

requirements to run such models (Yang et al., 2002).  This is especially true if the goal is 

to apply the model in a global scale. To compensate for the artificial domain 

representation, and the use of coarser data resolution than required, the specification of 

all needed parameters has to be done by calibration.  Furthermore, due to computational 

limitations, when applied to medium or large basin areas these models usually even 

coarser grids than available DEMs.  Therefore, model that adopts square-grid landscape 

decomposition are not appropriate to investigate the benefits of different DEMs for 

hydrological predictions.  
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I extract the river network using different sources of DEM on their original 

resolution (5 m for LIDAR, 30 m for the NED, 30 m for the ASTER, and 90 m for the 

SRTM).  I then aggregate the cells to coarser resolution areal grids (NED from 30 to 180 

meters, and LIDAR from 5 to 90 meters) to investigating the effects of resolution.   

To investigate the effects of simplifying the river network I also manipulated the 

final network obtained with the 90 meters NED DEM.  I systematically pruned the lower 

Horton order links (one to four), increasing the size of the hillslope, but maintaining the 

general structure of the river network.  Computational requirements increase linearly with 

the number of links simulated in a river watershed.  Therefore, if the effects of pruning 

the network are known, it might be of interest to use a simplified river network for 

hydrological simulations since it would considerably decrease simulation time.  These 

results would also provide insights for the development of global scale flood prediction 

system, based on simplified network structures (Wood et al., 2011).   

It is worthwhile mentioning that the pruning method used in this work preserves 

the fractal structure of the network.  This method is different than the one adopted by 

many semi-distributed approaches for hydrological modelling, for which basin 

decomposition is chosen based on an ad-hoc criteria, such as stream-gauge site location 

(or data availability) or/and study goals.  In some models the user is responsible for 

defining the spatial unit for rainfall–runoff calculations, that can vary from the entire 

watershed, or any smaller sub-watershed.  I expect that this type of basin discretization 

would result in larger errors, since physical processes are modeled by the same equations 

for a large range of scales.  

Criteria for DEM evaluation:  

geomorphological properties and hydrological simulation  

Many studies have evaluated different DEMs in terms of their vertical and 

horizontal accuracy (e.g. Reutebuch et al, 2003; Fujisada et al, 2005; Bhang et al, 2007; 
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Hirt et al, 2010).  However, the relevant aspect for flood prediction is the ability of the 

DEM to provide a good representation of the overall shape of the landscape and the river 

network.  Moreover, it is important to understand how discrepancies in the river network 

affect hydrological prediction.  Therefore, in this study I use two criteria to evaluate the 

potential of different DEMs for flood prediction.  First, I evaluate their ability to estimate 

river network physical properties that controls flood generation.  Secondly I investigate 

how uncertainties on landscape characterization propagate through hydrological models. 

For the first criteria I evaluate two geomorphological descriptors that are relevant 

for flood generation: the width function and the scaling of the maximum of the width 

function.  These functions correspond to to the hydrograph (width function) and peak 

flow scaling (width function maxima) obtained under the following idealized conditions: 

(1) spatially uniform instantaneous rainfall, (2) constant flow velocity, (3) negligible 

evaporation; (4) purely surface runoff (i.e., no infiltration and no subsurface runoff); and 

(5) instantaneous flow of runoff into the channel (Gupta et al, 1996; Troutman and Over, 

2001).  The width function, first introduced by (Shreve, 1969), is defined as the 

probability measure obtained by dividing the number of links at given distance x from the 

outlet by the total number of links in the network (Rinaldo et al., 1993).  I evaluate the 

shape and the maximum of the width function obtained for the outlet of the basin (Clear 

Creek and Cedar River) using river networks extracted from different DEMs.  I then 

determine the maximum of the width function for each link in the network and use it to 

construct scaling plots (Gupta et al, 2010).  I use least-squares regression between 

drainage area and the maximum of the width function to estimate the scaling parameters 

of the power law relationship, and I compare the parameters obtained based on different 

DEMs.  

I then apply the hydrological model described in the previous section to 

investigate how landscape characterization uncertainties propagate through hydrological 

model.  I first demonstrate the model skill by simulating an extreme rainfall event that 
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occurred in Iowa in the summer of 2008.  The evaluation of the model performance was 

presented by Seo et al. (in preparation), and was based on (1) observed streamflow at the 

outlet of nested basins ranging in scale from about 20 to 16,000 km2 and (2) streamflow 

simulated by a well-established and extensively calibrated hydrological model SAC-

SMA used by the US National Weather Service (Burnash, 1995).  These results were 

obtained based on the network extracted from the 90-m NED DEM.  Since models results 

are accurate, I use this dataset as a reference, and evaluate differences on simulations 

obtained with different networks, based on varies DEM sources, resolution and network 

pruning criteria.  Since the model was not best-fit to a particular DEM, difference 

between simulated values will be uniquely due to the effects of the DEM.   

I then perform synthetic simulations, forcing the hydrological model with 

spatially uniform rainfall with different duration and intensity.  In this case I isolated the 

effects of rainfall, and rainfall-runoff transformation spatial variability.  I evaluated the 

difference in simulated peak flow scaling obtained with different network structures and 

rainfall intensities (mild to intense rainfall events).   

Results 

River network extraction 

I used DEMs with different resolutions and from various sources to extract the 

river network for Cedar River (CR) and Clear Creek (CC) basin.  I also systematically 

pruned the network generated using the NED 90 meters DEM removing rivers with 

Horton order 1 to 5, transforming the Cedar River network from an original 9th Horton-

order into an 8th  (HO8), 7th  (HO7), 6th  (HO6) and 5th (HO5) Horton order network.  

Clear Creek was originally a 6th Horton-order network and it was transformed to a 5th, 4th, 

3th and 2nd Horton order network.  A list of all DEMs used and the basic characteristic of 

the final networks for each one of them is presented in Table IV-1.   
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For Clear Creek basin, the inferred drainage area is very similar for all DEM, 

resolutions and network pruning.  I used the LIDAR 5 meters DEM as reference to 

calculate the relative difference in drainage area.  The maximum relative difference was 

equal to approximately 1% for the ASTER and the SRTM 90 meters DEM.  In the case of 

Cedar River basin, the basin boundary was not correctly delineated using the 30 and 60 

meters resolution ASTER.  The Cedar River basin delineation obtained with the 30 

meters NED DEM is presented in Figure IV-2 (a), while the delineation obtained with the 

30 meters ASTER DEM is presented in Figure IV-2 (b).  The first one matches closely 

the delineation provided by the United States Geological Survey (USGS) hydrologic unit 

system (HUC 07080200), while the second one includes a tributary that in actuality 

drains to the Mississipi River.  The incorrect delineation arises from high vertical 

inaccuracies that can reach values up to 15 m according to the ASTER validation team 

(2011).  In this case the relative difference in basin drainage area to the reference DEM 

(30 meters NED) was 17%.  

Interestingly, the error disappears when I aggregate the ASTER data to 90 meters.  

In this case, the basin drainage area was correctly delineated with a relative error 

compared to the NED 30 meters DEM equal to around 0.5%.  This demonstrates that care 

should be taken when using remotely sensed DEM due to low vertical accuracy.  Some of 

the local vertical errors can be filtered if the DEM is aggregated to a coarser resolution in 

space.  In this case, a gain in vertical accuracy overcome loses due to spatial resolution, 

since the smoother DEM produced by the aggregation in space provided a better 

estimation of the basin boundaries.  

Table IV-2 also provides average hillslope information.  DEM resolution has a 

significant impact on the final hillslope size.  Coarser DEM resolution results in larger 

average hillslope area.  This happens since I are using a slope-dependent threshold to 

define channel initiation and hillslope size, and average slope changes as the resolution of 

the DEM changes, as also indicated in Table IV-2.   
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River network properties:  

width function and maximum of the width function 

In this section I use the width function and the scaling of the maximum of the 

width function to evaluate differences in the river networks extracted from different 

DEMs.  The importance of this two network properties for hydrological simulation has 

been previously discussed.  

In Figure IV-3 and Figure IV-4 I present the width function extracted for Clear 

Creek and Cedar River, respectively.  I normalized both axes by the width function 

maxima to be able to compare the shape of the width functions.  The red line in the plot 

indicates the location of the maximum of the width function.  The values in squared 

brackets show how many million DEM pixels are contained in the basin analyzed, which 

varies with DEM source and resolution. 

For Clear Creek I included high-resolution LiDAR data, and I systematically 

aggregated this database to resolutions that varies from 5 to 90 meters.  I also included 

the width function estimated based on the 90 meters resolution NED, ASTER, and SRTM 

datasets.  Even though all the datasets captured the general shape of the width function, 

with three main local peaks, the maxima of the width function was not equally estimated 

for all datasets.  For the 5, 10, and 30 meters resolution LIDAR DEM the maxima of the 

width function are in the second local peak, while for the other datasets they are in the 

third local peak.  For the datasets with the same resolution (90 meters LIDAR, NED, 

ASTER, SRTM) the maximum of the width function was located almost at the same 

distance to the outlet.  Based on these results, I conclude that for Clear Creek DEM 

resolution strongly affects the delineation of the width function, while the effects related 

to the DEM source, and consequently to the vertical accuracy, have a smaller impact.   

For the Cedar River basin the shape of the width function is significantly different 

for different DEM sources.  Contrary to the Clear Creek basin, the vertical accuracy in 

this case does play a role on the estimation of the width function.  This might be caused 
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by vertical errors that are correlated in space, increasing the number of links in specific 

parts of the basin.  On the other hand, the resolution of the DEM did not strongly affect 

the width function shape or the location of the peak.  The effect of resolution is 

proportional to the number of DEM pixels contained in the basin, and the relative change 

in this number when the DEM resolution is modified.  The change in the number of pixel 

caused by the decrease in DEM resolution was much more significant for the Clear Creek 

case.  The last line of Figure IV-4 presents the width function for different pruning 

methods.  The number in the Figure indicates the Horton order of the basin. We can see 

in the plots that the shape of the width function did not changed significantly with 

changes in “hillslope” size. 

In Figure IV-5 I present the width function maxima for Cedar Rapids.  I used 

ordinary least square regression to obtain the parameters of the power law relationship 

between drainage area and corresponding width function maxima.  Even though the 

width function of a specific site is affected by the source and resolution of the DEM, all 

the DEM sources provide a good estimation of the statistical structure of the width 

function maxima.  This shows that local vertical errors are filtered out when treated in a 

statistical way.  

Effects on hydrological simulation:  

2008 Iowa flood event 

In this section I present the simulations results for an extreme flood event that 

occurred in Iowa in the summer of 2008.  During this event, peak flows with 500 years 

return period were observed in some parts of the basin.  For the simulations presented 

here all the models parameters were estimated based on the data presented in Table 2.  

Cunha et al (in preparation) presented the validation of the simulation results for Cedar 

River, and Iowa River, using constant initial conditions for the soil across the study.  In 

the paper presented by Seo et al (in preparation), the same model was used, but NLDAS 



www.manaraa.com

 

 

108 

data was used to setup space variable initial conditions for the soil.  In this study I use the 

same model version adopted in Seo et al (in preparation) study.  Validation of model 

results was also presented by the author and will not be repeated here.  

 Figure IV-6 presents the observed and simulated hydrographs for selected sites in 

the basin.  I normalized the y-axis by the site mean annual flood, calculated as a power 

law function of the basin drainage area.  Assuming that the mean annual flood is a good 

approximation for bankfull flood (Leopold et al 1964), any value above one means the 

site was flooded.  Values in the left corner indicate the site number and drainage area (see 

Figure IV-1). Seo (in preparation) presented results for all the sites.  I focus on showing 

the results for some selected sites, covering the whole spectrum of drainage area.  In the 

right corner of each hydrograph I present the goodness-of-fit (correlation, and Nash 

coefficient) for the results obtained with the network extracted from the NED 90m DEM 

(blue line).  Observed values are presented in gray.  Note that for some of the sites, the 

streamflow series present a large amount of missing values (e.g site11).  To be able to 

calculate the statistics I filled out the missing points using a simple linear interpolation 

method.  Large number of missing points affects the goodness-of-fit statistics, and in this 

case the visual comparison provides a better way to evaluate model results.  The figure 

demonstrates the skill of the model on simulating streamflow across scales.  

To investigate the effect of the river network on flow simulation I also present the 

simulated values based on ASTER (green), 180 m resolution NED (magenta), and NED 

HO6 (cyan).  Differences were especially significant for Clear Creek Site (site number 6), 

the same site for which I present the width function analyses (Figure IV-3).  For this site 

there is a considerable difference on the shape of the basin response.  Since parameters 

and inputs, other than the ones based on the DEM, are the same for all simulations, these 

differences reflect the effect of the width function on hydrological simulation.  Looking 

at the figure we can see that the differences are not significant for all the sites.  The 
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differences seem to decrease as the basin area increases what might be the result of small-

scale uncertainties being filtered by the river network. 

 Figure IV-7 presents the scaling of peak flow for the 2008 Iowa flood event.  The 

reader is directed to (Gupta et al., 2010) for a review about the relevance of event-based 

peak flow power laws in flood prediction.  Each one of the light gray dots represents 

simulated peak flow value for one link in the river network.  In this plot I just included 

the simulated values obtained with the 90 m NED DEM.  To estimate the relationship 

between peak flow and basin drainage area I used a non-parametric kernel regression.  

The object of nonparametric regression is to estimate the regression function between the 

independent variable (in this case drainage area), and the dependent variable (peak flow) 

directly, rather than to estimate parameters.  This type of regression relaxes the linearity 

assumption required for parametric methods (Black and Smith, 2004).  Another important 

reason to use non-parametric regression is the difference in the number of points for 

different DEMs, since the total number of hillslopes depends on the network (see Table 

3).  Different number of points might bias the estimation of parameters if the least square 

method is used.  Observed values are presented in dark gray.  Note that three sites present 

observed values below the fitted lines.  These sites presented missing values exactly at 

the time of the peak, and the values of peak flow were obtained by linear interpolation 

and are likely to be underestimated.  Figure IV-7 (a) presents the regression lines 

obtained with different DEM sources (NED, ASTER, SRTM) with 90 meters resolution,  

(b) presents the regression lines obtained with NED DEM aggregated to different 

resolutions (30,90, 120,180), and  (c) present the regression lines obtained for different 

network pruning (original HO9, HO8, HO7, and HO6).  These figure shows that space-

based remotely sensed DEMs (specially the SRTM DEM) can be used to simulate the 

statistical structure of peak flows, even tough some uncertainty exists in the estimation of 

the hydrographs for small scale basin.  The effects of DEM resolution and network 

pruning were more accentuate than the effect of DEM source.  
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Effects on hydrological simulation:  

synthetic rainfall 

In the previous section I demonstrated the skills of the hydrological model on 

simulating flood events.  In this section I use CUENCAS to simulate synthetic flood 

events with different rainfall intensity. I assumed uniformly distributed rainfall 

throughout the basin with varying total volume (30, 60 and 120 mm) and fixed duration 

equal to 120 minutes, what corresponds to different rainfall intensities (15, 30, 60 mm/h).  

I performed simulations for Cedar River basin using the network extracted from the NED 

(30, 90, 120, and 150 m resolution), ASTER, SRTM 90 meters DEM, and the 90 meters 

DEM pruned to Horton order equal to eight (HO8) and seven (HO7), initially a Horton 

order 9 network (HO9).  The initial conditions of the surface, soil and channel were set to 

zero (dry conditions).  I use the same soil, channel, and surface parameters used to 

simulate the 2008 event. 

I present the simulation results in Figure IV-8.  The plots display the statistical 

peak flow scaling relationships for different rainfall scenarios (different panels, from top 

to bottom) obtained with networks extracted from different DEMs (different lines in the 

plots).  Rainfall total volume (intensity) increases from the top to the bottom of the plot 

(30, 60, and 120 mm, that correspond to intensity of 15, 30, and 60 mm/h).  Rainfall 

duration is always 120 min.  From now on these events will be referred as mild, intense, 

and extreme, respectively.  To estimate the relationship between peak flow and basin 

drainage area I used a non-parametric kernel regression, as described in the previous 

section. 

The results for different DEM sources, resolution and network pruning are shown 

in column one, two, and three of Figure IV-8, respectively.  The blue line in all the plots 

represents the simulation with the reference DEM (NED 90 meters).  In the first columns 

I present the results based on ASTER (green line) and SRTM (red line).  The results for 

NED and SRTM overlay, while the results for ASTER are slightly different for the mild 
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event.  The difference decreases as the intensity of the event increases.  This figure 

demonstrates that network extracted from remote sensed DEM can be used for 

hydrological simulation, especially if the focus is on intense to extreme flood events. 

The second column presents results for NED DEM aggregated to different spatial 

resolution (30, 90, 120, 150 m).  Brown, blue, gray, and margent lines correspond to 30, 

90, 120, and 150 meters DEM, respectively.  In this case the results are significantly 

different for mild and intense events.  As it happened in the case of different DEM 

sources, the differences decrease as the intensity of the events increases.  However, the 

differences are still significant for intense events.  The last column presents results for 

different network pruning.  The pruning processes correspond to increasing the average 

hillslope area (   , since I remove small order streams transforming them into hillslopes.  

I show the results for the original Cedar River basin network that correspond to an 

Horton-order equal to 9 (HO9,  [  ]         km2), and pruning one  (HO8,  [  ]  

       km2) , two  (HO7,  [  ]         km2), three (HO6,  [  ]         km2) 

orders.  In this case the differences between the simulations with the different networks 

are substantial.  These results demonstrate the importance of correctly representing the 

properties of the river network to simulate floods.  If the river network were not fully 

represented in the model, other parameters would have to compensate for the differences 

observed in Figure IV-8.  As for the other scenarios, the differences also decrease with 

event intensity, but in this case they are still very large for the extreme event case.  

Conclusions 

In this study I investigated how uncertainties on the extraction of the river 

network from DEM introduce errors on the characterization of hydrological relevant 

landscape properties and how these uncertainties propagate through hydrological models.  

Errors in the characterization of the landscape can arise from vertical and horizontal 

inaccuracy of the DEMs, coarse spatial resolution, and the method used to extract the 
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river network.  The analysis was performed on the Clear Creek (254 km2) and Cedar 

River (16,853 km2) basins located in Iowa, in the Midwest of the US. 

I included in the analyses DEMs from different sources (LIDAR, NED, ASTER, 

and SRTM), and different resolutions generated by the aggregation of the original DEMs 

(from 30 to 90, 120, 150 and 180 meters).  In addition, I created supplementary river 

networks by systematically pruning the small Horton-order streams.  For this process I 

used as reference the network obtained from the 90 meters DEM (originally Horton order 

9 for Cedar Rapids) and transformed it in networks of Horton order 8 (pruned river 

channels of order 1) to 5 (pruned river channels of order lower than 4).  

I compared the different networks to evaluate the corresponding characterization 

of river network properties that are relevant to hydrological simulations.  I then use the 

hydrological model to account for more realistic situations, including rainfall events with 

different intensities and spatial variability of relevant hydrological processes like rainfall-

runoff transformation, soil dynamics and evaporation.  

The width function and the width function maxima provide information about the 

flow hydrograph under idealized conditions of precipitation and water transport.  The 

width function is related to the hydrograph at a specific point in the watershed.  The 

networks extracted with different DEMs did not provide a good estimation of the shape 

of the width function.  Even when I used the same dataset, but changed the resolution by 

aggregation, the shape of the width function changed considerably.  The impact of 

resolution depends on the ratio between basin area and DEM pixel size.  Different 

sources of DEM might or might not have an impact on the final shape of the function.  

For Clear Creek, the shapes obtained with LIDAR, NED, ASTER and SRTM DEM were 

very similar.  In contrast width function obtained for Cedar River revealed significant 

differences. I conjecture that this is due to spatially correlated errors that can strongly 

affect the estimation of the width function.  Network pruning did not cause a big impact 

on the general shape of the width function or in the location of the maxima of the width 
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function.  Width functions obtained for the pruned networks became smoother than the 

ones obtained for the entire network (order 9). 

On the other hand, river networks extracted from the different data sources 

provided a good estimation of the scaling properties of the maximum of the width 

function.  This function represents a statistical measure of the network.  I conclude that, 

even though local properties of the network (width function) are sensitive to the DEM 

source and resolution, the statistical properties of the network are reasonably well 

estimated by all the DEMs analyzed in this work.  However, pruning the network 

significantly changed the scaling properties of the width function maxima.  

I then simulate a real flood event that occurred in Iowa during the summer of 

2008.  This event was classified as extreme.  I demonstrate the model ability on 

reproducing observed hydrographs and peak flow.  The hydrographs demonstrate that 

errors in estimating the width function propagate through the hydrological model.  The 

results of the simulations demonstrated that differences on simulated flows are more 

significant when I pruned the network than when I use coarse resolution DEMs, or 

satellite-based DEM.  This demonstrates the importance of correctly represent the river 

network and its property on hydrological models that focus on flood. 

I then performed a simulation study, applying uniformly distributed rainfall 

throughout the basin with varying total volume (30, 60 and 120 mm) and duration equal 

to 120 minutes.  The goal of this synthetic study was to investigate the role of event 

intensity, without including spatial variability of rainfall.  Peak flow statistical scaling 

relationships obtained using the networks extracted from remotely sensed DEMs 

(specially SRTM) are very similar to the one obtained by the NED DEM (reference).  

The pruned DEM presented peak flow scaling with similar slope, but with a different 

intercept.  In this case peak flow was underestimated across scales.  An important 

conclusion is that uncertainty decrease as the amount of precipitation increases.  In 

addition, these results demonstrate the importance of correctly representing the properties 
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of the river network to simulate floods.  If the river network were not fully represented in 

the model, other parameters would have to compensate for the differences. 

This work accomplishes the primary goal of demonstrating an approach to 

evaluate the potential of satellite-based DEM for flood prediction across multiple scales 

using a calibration-free model.  However, our results are limited to regions that present 

errors similar to the study area.  As demonstrate by Smith and Berry (2011), expected 

DEM errors are dependent on the region of interest.  Much work remains to be done 

before we can comprehensively understand the effects of DEM errors for different 

regions of the world.   

Table IV-1. Different sources of DEM data with main characteristics and links for data 
repository 

Data 
source 

Spatial 
Resolution 

Coverage Vertical  
Accuracy 

Source 

LIDAR 1 meter Local/regional 0.1-1.0 www.iowadnr.gov 
NED  1 Arc 

(~30m) 
US <=2.44m seamless.usgs.gov 

SRTM 3 Arc 
(~90m)  

Globally <=16m seamless.usgs.gov 

ASTER 1 Arc (~30) Globally 6-15m http://reverb.echo.nasa.gov/reverb/ 
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Table IV-2. List of DEM used to extract the river network of Clear Creek and Cedar River basin and main properties of the extracted 
network 

Basin Res. (m) Source/ 
Prunning 

nlinks Hor.
Ord. 

Area Rel dif 
area 

River 
length 

Aver. 
hills. area 

Aver.  
Hills. 
Slope 

Aver.  
Hills. 
relief 

CC 5 LIDAR 14739 7 253.97 Ref. 2078 0.017 0.022 11.90 
CC 10 LIDAR 11912 7 254.10 0.05 1885 0.021 0.022 12.39 
CC 20 LIDAR 8963 7 254.21 0.10 1692 0.028 0.023 12.78 
CC 30 LIDAR 6774 6 254.34 0.15 1522 0.038 0.022 13.19 
CC 60 LIDAR 2442 6 254.28 0.12 923 0.104 0.017 15.89 
CC 90 NED 1580 5 254.86 0.35 686 0.161 0.016 17.12 
CC 120 NED 886 5 254.73 0.30 527 0.288 0.012 19.60 
CC 180 NED 400 5 254.16 0.07 348 0.635 0.009 21.35 
CC 60 ASTER 4841 6 254.65 0.27 1204 0.053 0.013 15.78 
CC 90 ASTER 1117 5 256.45 0.98 608 0.230 0.010 17.20 
CC 90 SRTM 1360 5 256.27 0.91 687 0.188 0.013 18.21 
CC 90 NED/HO8 1015 5 254.86 0.35 471 0.251 0.012 19.68 
CC 90 NED/HO7 230 4 254.86 0.35 226 1.108 0.006 27.56 
CC 90 NED/HO6 41 3 254.86 0.35 117 6.216 0.003 38.77 
CC 90 NED/HO5 7 2 254.86 0.35 46 36.4 0.002 50.33 
CR 30 NED 305352 9 16875 Ref. 81696 0.055 0.011 7.69 
CR 90 NED 78503 8 16878 0.02 40701 0.215 0.008 10.18 
CR 120 NED 43648 8 16799 -0.45 31502 0.385 0.007 11.83 
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Table IV-2 Continued 
CR 150 NED 78503 8 16878 0.02 40701 0.215 0.008 10.18 
CR 180 NED 20976 7 16780 -0.56 21895 0.800 0.006 13.84 
CR 30 ASTER 349999 10 19917 18.03 106395 0.057 0.007 8.80 
CR 60 ASTER 199307 9 19710 16.80 77134 0.099 0.007 9.65 
CR 90 ASTER 77603 8 16787 -0.52 43481 0.216 0.005 10.54 
CR 90 SRTM 88386 8 16785 -0.53 47356 0.190 0.006 12.90 
CR 90 NED/HO8 57535 8 16878 0.02 29956 0.293 0.006 10.92 
CR 90 NED/HO7 12615 7 16878 0.02 14590 1.338 0.004 17.84 
CR 90 NED/HO6 2759 6 16878 0.02 7531 6.118 0.002 26.95 
CR 90 NED/HO5 597 5 16878 0.02 3972 28.27 0.001 39.25 
CR 90 NED/HO4 133 4 16878 0.02 1958 126.9 0.001 57.20 
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Figure IV-1. Study area.  The background shows the 90 meters NED DEM.  Blue 
(selected sites which hydrographs are shown in Figure 6) and red dots 
represented streamflow sites.  In the state wide map I also present the location 
of the 4 weather radar that cover the area 
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Figure IV-2. Cedar River basin boundaries delineated based on (a) NED 30 meters DEM 
and (b) ASTER 30 meters DEM.  In Figure (b) I also include the NED 30 
meters DEM delineation in white for a reference.   
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Figure IV-3. Width function for Clear Creek at Coralville extracted from different DEMs. 
The red line indicates the position of the maximum of the width function. The 
number in square brackets indicate the number of pixels in the DEM 
contained in the basin 
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Figure IV-4. Width function for Cedar River basin at Cedar Rapids extracted from 
different DEMs. The red line indicates the position of the maximum of the 
width function. The number in square brackets indicate the number of pixels 
in the DEM contained in the basin 
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Figure IV-5. Width function maxima for Cedar River extracted from different DEMs 
Statistical self-similarity of width function maxima in terms of drainage area 
obtain based on different DEMs for Cedar River basin.  The ordinary least 
square regression is used to obtain the relationship between drainage area and 
width function maxima. The parameters of the scaling relationship are 
presented in the square brackets: [coefficient, exponent, correlation 
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Figure IV-6. Normalized simulated and observed streamflow for sites located in the Clear 
Creek and Cedar River basin.  Discharge was normalized by the mean annual 
flood.  Observed values are plotted in gray, simulated using NED 90 m DEM 
in green, simulated with NED 180 m in magenta, and simulated with NED 
HO6 in cyan.  Values in the left corner indicate the site number (figure 1) and 
drainage area, and the values in the right indicate goodness-of-fit statistics 
[correlation, Nash] for the simulation with 90m NED. 
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Figure IV-7. Scaling of peak flow for the 2008 Iowa flood event.  Dark gray values are 
observed, dark blue are predicted with NED 90 m DEM.  The lines were 
estimated based on non-parametric regression between basin drainage area 
and peak flows for all the links in the river network.  Light gray dots represent 
the simulated peak flow obtained with the NED 90 m DEM.  The red line 
correspond to the mean annual flood.  
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Figure IV-8. Results from the simulation based on synthetic rainfall.  First and second 
lines present results based on accumulated rainfall equal to 30 and 120 mm, 
respectively.  Simulation with the reference network (90 meters) is plotted in 
dark blue, and for this simulation the peak flow values for each link are 
represented by gray dots.  Peak flow scaling obtained based on datasets with 
different source (column 1), resolution (column 2) and pruning (column 3) are 
presented in red, green and magenta.  
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CHAPTER V IMPACT OF RADAR-RAINFALL ERROR STRUCTURE ON 

ESTIMATED FLOOD MAGNITUDE ACROSS SCALES 

Introduction 

In this chapter, I explore the effects of uncertainties in radar-estimated rainfall on 

streamflow prediction at a range of spatial scales.  Rainfall is the main input to 

hydrological models, and its uncertainties may strongly affect streamflow simulation (e.g. 

Arnaud et al., 2011).  While a number of direct and indirect methods are available to 

estimate rainfall rate and accumulation, weather radars are the only operational 

instruments capable of providing rainfall estimates over large domains with a high space-

time resolution.  Even though the focus of this thesis is on satellite remote sensing data, 

radar rainfall is often used as a reference to evaluate satellite datasets.  Since radar-

rainfall estimates are subject to significant uncertainty (see  Villarini and Krajewski, 2010 

for a review), understand their uncertainty and how they propagate through hydrological 

models, is an essential step towards being able to use this datasets as a reference.   

The main goal of this study is to evaluate the impact that radar rainfall 

uncertainties associated with NEXRAD-based (e.g. Fulton et al., 1998) products have on 

flood simulation.  Our methodology can be viewed as a data-based simulation.  It consists 

of generating ensembles of “equally probable” rainfall fields that are then propagated 

through a rainfall-runoff hydrological model that simulates streamflow at the outlet of a 

basin.  This requires two main components: (1) a rainfall ensemble generator that 

provides maps of rainfall that mimic the actual radar-rainfall uncertainty and (2) a 

parsimonious hydrological model whose parameters can be prescribed a priori using 

physical properties of the watershed, thereby avoiding the need for parameter calibration.  

Our Introduction discusses the main features of two such components selected for our 

study.  



www.manaraa.com

126 
 

 

Uncertainties in radar rainfall estimates have been studied for more than 30 years 

(Wilson and Brandes, 1979; Anderl et al., 1976; Cluckie and Collier, 1991), and several 

models have been proposed for the statistical description of radar-rainfall errors (see 

reviews by Villarini and Krajewski 2009; Mandapaka and Germann (2010)).  Early 

methods of simulating synthetic radar-rainfall fields, i.e. rainfall fields that are corrupted 

by radar-like systematic and random errors, were based on a conceptual understanding of 

the uncertainties involved (Krajewski and Georgakakos, 1985).  While these methods 

attempted to capture the main aspects of the factors that caused uncertainty, they lacked 

an empirically-based quantification of the deviations between the true and radar-

estimated rainfall.  Therefore, there was no guarantee that actual radar-rainfall 

uncertainty was realistically represented in studies that used these methods (Sharif et al., 

2002; Sharif et al. 2004).  To overcome this weakness, recent developments focus on the 

empirically-based modeling of radar-rainfall uncertainty (e.g. Germann et al. 2009).  In 

this study, I adopted the radar-rainfall generator proposed by Villarini et al. (2009) which 

is based on the empirical radar rainfall error model by Ciach et al. (2007).  This model 

characterizes the statistical structure of radar-rainfall errors with three components: (1) an 

overall multiplicative bias factor estimated using long-term accumulated radar-rainfall 

and gauge-rainfall values; (2) a systematic distortion function, conditioned on the radar-

estimated rainfall value; and (3) a stochastic factor quantifying residual random errors.  

The model accounts for range dependency and for spatial and temporal correlation in 

errors.  The generator uses a conditional simulation framework: given the estimates 

provided by a specific radar-rainfall estimation algorithm, the method returns rainfall 

fields that have the same error structure as that observed empirically for that algorithm.  

In our case, the algorithm is the Precipitation Processing System (Fulton et al. 1998) that 

converts the reflectivity data from the WSR-88D weather radars to the hourly 

accumulation with approximately 4 km by 4 km spatial resolution (see Ciach et al. 2007 

and Villarini et al. 2009 for details).  The fact that the generator is conditional on actual 
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radar-rainfall fields ensures relevance to practical applications and allows analysis of real 

events. 

Once realistic radar-rainfall ensembles are generated, they are used as input to a 

hydrological model that simulates streamflow.  Each member of the ensemble will result 

in a somewhat different hydrograph.  Does the spread of different characteristics of the 

resultant hydrographs (such as the peak value or the time-to-peak) depend on the scale of 

the basin?  How does the spread compare to the difference between the model output 

obtained using the “observed” field (i.e. the one on which the conditional simulation was 

based) and the streamflow observations?  I address these questions herein. 

Previous studies have demonstrated, albeit indirectly, that a fair investigation of 

how rainfall errors affect flood simulation requires a calibration-free hydrological model, 

since calibration camouflages uncertainties related to both the hydrologic model-structure 

and the rainfall input data uncertainty.  Carpenter and Georgakakos (2004) investigated 

the impacts of rainfall input and rainfall-runoff model parametric uncertainty on flow 

simulation using a calibrated distributed hydrological model.  Their results showed that 

errors due to model parameter estimation are of the same order of magnitude or even 

larger than the errors due to rainfall uncertainties.  Schröter et al. (2011) used a 

probabilistic model to generate an ensemble of precipitation fields that were then used as 

input to a hydrological model.  The authors calibrated the model based on the different 

rainfall ensembles and demonstrated that rainfall uncertainties might have a significant 

impact on the estimated parameter estimates.  He et al. (2011) evaluated the impact of 

radar rainfall uncertainties on water resources modeling using a model that was calibrated 

based on rain gauge data.  According to these authors, if radar precipitation were used to 

calibrate the model, sensitivity of simulated stream discharge to rainfall input would have 

changed.  Fu et al. (2011) investigated the impact of precipitation spatial resolution on the 

hydrological response of an integrated distributed water resources model and concluded 

that, “the effects of precipitation input are so dominant that it could potentially impact the 
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estimates of model parameters when the hydrological model is calibrated.”  The study 

further concluded that model parameters estimated by calibration would be biased in 

order to compensate for errors introduced by low-resolution precipitation.  These studies 

demonstrate the need for a simulation framework that isolates uncertainties due to 

parameter estimation and input. 

Such a framework requires that the hydrologic model have a certain level of skill 

merely due to its structure and ability to mimic the dominant processes of hydrologic 

response to rainfall.  The numerical values of the required coefficients (parameters) 

should be “observable” from the characteristics of the basin, including topography, land 

cover, land use, soils, etc.  The level of skill should be such that given a more accurate 

input, the model should provide better output.  This is not always the case with calibrated 

models that adjust their parameter values to compensate for uncertainties in the input. 

In this study, I used the fully distributed, physically-based, and calibration-free 

hydrological model developed in this thesis that allows the isolation of errors due to 

model structure and rainfall input.  As discussed in the introduction of this thesis, the 

model provides an impartial evaluation of how rainfall errors propagate through 

hydrological models and affect flood prediction across a large range of scales.  

Calibration is avoided with the use of parameters that are directly linked to the physical 

properties of the watershed (e.g. soil water storage, hillslope shape, and channel flow 

velocity).  The fine decomposition of the terrain into hillslopes and links results in a 

realistic representation of the stream and river drainage network, which allows us to 

apply model equations that represent processes close to the scales as they occur in nature 

(Mantilla and Gupta, 2005).  Runoff is generated at hillslopes and water is transported via 

the drainage network of connected links.  Model equations at the hillslope-link scale are 

based on mass and momentum conservation principles.   

Previous studies have also demonstrated that flow simulation uncertainty is 

strongly dependent on catchment scale, with uncertainty decreasing as basin scale 
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increases (Carpenter, 2006).  This is expected since the river network filters out small-

scale variability and uncertainties (Mandapaka et al., 2009).  In previous studies 

(Carpenter and Georgakakos, 2004; He et al. 2011) this conclusion was reached based on 

the analysis of mid-size basins, including a limited number of points in the watershed, for 

which streamflow observations were available and used to calibrate the model.  In order 

to be able to characterize the scales for which radar data provide good information for 

flood prediction, a more comprehensive study involving a large number of sites covering 

a large range of scales (from few to thousands of square kilometers) is required.  The 

basin decomposition method used in this study provides flow simulation for every link in 

the basin, which allows us to investigate error scale dependency using a large number of 

sites (more than 70,000) covering a wide range of spatial scales, from hillslope (~0.1 

km2) to large watersheds (~16,000 km2).   

The model version used in this chapter is described in section 6.2.  In section 6.3, 

I present methodological aspects of this work, focusing on the rainfall generator.  Section 

6.4 includes the main results of this study, including: (1) the validation of the 

hydrological model across multiple scales (model version 5 with constant soil initial 

condition), (2) the rainfall error scenarios and statistics for the generated rainfall 

ensembles, and (3) flow sensitivity to different rainfall error scenarios.  The last section 

presents the main conclusions of this work.  

Study area and model version 

The study is carried out for the Iowa and the Cedar River basins, located almost 

entirely in the state of Iowa.  The total drainage area is 7,234 km2 for the Iowa River (in 

Marengo) and 16,853 km2 for the Cedar River (in Cedar Rapids).  

In this chapter, I used the most complete version of the hydrological model 

(model 5 in Table 2.1), with constant soil initial condition across the entire basin area.  At 

this point of development, I have not included the NLDAS dataset to estimate soil initial 
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conditions that are variable in space.  As the number of simulations performed in this 

study is large and this component is not expect to change the general conclusions of this 

study, I opt to not re-run the simulations.  The remaining components of the model are 

the same ones adopted and described in Chapter 3.  Model input includes rainfall and 

potential evapotranspiration (PET).  For rainfall, I used the Stage IV rainfall product, 

which represents hourly accumulation given on an approximately 4 km by 4 km grid.  

Stage IV products are provided by the National Weather Service.  Fulton et al. (1998) 

describe the methods and data used to produce the different multi-sensor precipitation 

products provided by the NWS.  Stage IV is a post-processed product based on the 

merging of radar and rain gauge data in particular to remove the mean-field bias in the 

radar-only estimates.  Hereafter, I refer to these overall bias corrected fields as reference 

rainfall.  I used NEXRAD’s Stage IV products as a reference in this study to compare 

how different rainfall error sources and scenarios affect hydrological prediction across 

scales. 

For PET, I use the product produced by the North American Regional Reanalysis 

- NLDAS-2 with 1 hour resolution in time and 0.125° (~13 km) resolution in space.  PET 

is used to estimate the actual evaporation from the surface and from the unsaturated and 

saturated layers of the soil.  Dingman (2002) defines PET as ”the rate at which 

evapotranspiration would occur from a large area completely and uniformly covered with 

growing vegetation which has access to an unlimited supply of soil water and without 

advection or heat-storage effect.”  Using PET to calculate actual evaporation presumes 

that the only factor limiting evaporation is water availability.  No limitations are imposed 

on the evaporation of water from the surface storage. 

I used the National Elevation Dataset (NED) with 90 m resolution to extract the 

stream and river network.  Our procedure (Mantilla and Gupta, 2005) resulted in 78,503 

hillslopes for the Cedar River basin with an average hillslope area of 0.20 km2 and 

44,527 hillslopes for the Iowa River basin with an average hillslope area of  0.16 km2.  I 
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used the USGS hydraulic measurements to estimate the parameters of hydraulic geometry 

equations based on the formulation proposed by Dodov (2004), Paik (2004), and Mantilla 

(2007).  To estimate soil hydraulic properties and water storage availability, I used the 

soil dataset SURGO.  To estimate the roughness coefficient (Manning’s) for the overland 

water transport equations, I used the high-resolution national land cover dataset (Homer 

et al., 2007).  

Finally, I used two datasets to evaluate the model’s performance.  First, I used the 

USGS streamflow data for a total of 24 sites to compare observed and simulated 

discharge.  It is important to point out that I did not use this information to calibrate the 

model’s parameters; therefore, the comparison constitutes an independent evaluation of 

the model’s performance.  I also compared the streamflow simulations from CUENCAS 

with those from the Sacramento Soil Moisture Accounting (SAC-SMA) model (Burnash, 

1995), which is used by the National Weather Service as the main component of their 

flood forecasting system (Welles et al., 2007).  

Methodology 

I performed a data-driven simulation study to investigate the effects of uncertainty 

in the radar-rainfall input on our hydrologic distributed model.  I selected a month-long 

period with rainfall and streamflow data immediately preceding the 2008 flood in Iowa.  

Our flood prediction model is a physically-based rainfall-runoff model that simulates 

response to rainfall forcing at a wide range of scales, with the smallest being a hillslope 

scale.  The geometry of the hillslope elements of the model is irregular, but each hillslope 

is connected to a channel link whose location is determined by analysis of the high-

resolution topography data, as described above.  The model uses the information on land 

cover and land use, soil types, and topography based on readily available data that are 

mapped to the scale of the hillslopes.  The function of the hillslopes is to partition the 

rainfall input into surface runoff, infiltration, and evapotranspiration.  This is 
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accomplished by using empirically based parameterizations of the relevant processes 

documented in the literature.  I do not perform local adjustments (calibration) of the 

coefficients to force better agreement with the observed streamflow.  Surface runoff and 

subsurface quick flow feed the channels, and the water is transported down the drainage 

network.  The discharge is aggregated as the water flows to higher order streams.  The 

aggregated discharge is attenuated by the selected water velocity model.  The model has a 

power law functional form with the velocity dependent on the magnitude of the discharge 

and the upstream drainage area.  The coefficients of the velocity model are calibrated by 

using the USGS collected and published discharge and water velocity data.  The fact that 

the model parameters are not calibrated to fit the discharge data implies that the 

uncertainties in the input are independent of the errors in the predicted (simulated) 

discharge.  This also means that I have avoided favoring the scales for which discharge 

observations are available.  The model is, in principle, suitable for prediction at any scale 

provided that the velocity model (channel transport) is valid. 

I evaluated the model performance prior to performing our simulation experiment.  

Clearly, if the model were not accurate, there would be little point in using it to study 

uncertainty in the input data.  On the other hand, if the model were best-fit to a particular 

input (rainfall) product, it would, by construction, mask the effect of errors in a 

competing input product.  For a calibrated model, it would be possible to perform better 

when forced by an inferior input product. 

Once the model was ready, I forced it with the radar-rainfall input generated by a 

recently developed error model of the NEXRAD-based hourly rainfall maps (Ciach et al., 

2007; Villarini and Krajewski, 2009b).  The model is based on a large sample of 

empirical data and has a flexible structure that allows one to study the effects of different 

error components, particularly the effects of systematic and random components.  Using 

the error model, I generated multiple realizations (equally probable) of radar-rainfall 
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fields that were conditional on the observed (reference) field.  Each of the generated 

realizations has the same statistical error structure as the reference field. 

I applied the generated ensemble of the radar-rainfall input to the hydrologic 

rainfall-runoff model and thus simulated multiple realizations of the discharge.  I then 

calculated several performance measures to evaluate the spread of the obtained discharge 

values and compared it with the discrepancy (errors) between the discharge obtained 

using the reference input and the observed discharge.  I calculated these measures at a 

range of spatial scales from very small to fairly large (~20,000 km2).  I then repeated the 

above ensemble simulation for a different scenario of the radar-rainfall model. 

This work is composed of  two main components: (1) the distributed physically 

based hydrological model and (2) the radar-rainfall error model and the ensemble 

generator used to produce equally probable rainfall fields based on the reference rainfall 

(Stage IV) and the radar-rainfall error structure scenario.  The hydrological model was 

described in the Chapter 2 of this thesis.  In the next section I will focus on describing the 

second component of this work.  

Radar rainfall error model  

and ensemble generator 

I employed the radar rainfall error generator proposed by Villarini et al. (2009b) 

to produce ensembles of equally probable rainfall fields.  The method uses an empirically 

derived error model to generate synthetic probable rainfall fields conditioned on a given 

rainfall map.  The uncertainty model adopted in the generator was proposed by Ciach et 

al. (2007).  In this model, the true pixel-scale average rainfall RA(x,y) at a location (x,y) 

within the basin is expressed as the product of a deterministic component and a random 

component, both conditioned on reference rainfall, RR(x,y), 

( ) ( )A R RR h R R    Equation V-1 
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The deterministic distortion function,  (   , accounts for the conditional (i.e. on 

rainfall magnitude) biases, whereas the stochastic factor,  (   , describes the random 

deviations from the true but unknown rainfall.  Note that both components are a function 

of the reference rainfall rate   .  This feature has important implications that will be 

revealed later.  The deterministic distortion function is approximated by the two-

parameter power law 

 0( )
b

R Rh R a B R     Equation V-2 

and the random component is approximated by a Gaussian distribution with the mean of 

1 and its standard deviation modeled as a rapidly decreasing hyperbolic function of the 

reference rainfall. 

   0( , ) ( , )
e

R RR x y c d B R x y                      Equation V-3 

In equations (2) and (3),   is the overall (time integrated) bias,   and   are the 

parameters of the deterministic distortion function; and      and   are the parameters of 

the random component.  The parameters were estimated by Ciach et al. (2007) using six-

years of level-II hourly rainfall data from the Oklahoma City WSR-88D radar site 

(KTLX) and rain gauge records from the Oklahoma Mesonet (Brock et al., 1995) and the 

Agricultural Research Service (ARS) Micronet.  The parameters vary with season and 

distance from the radar site.  In addition, the authors used the radar- and gauge-rainfall 

data to estimate the spatial and temporal correlation of random errors.  Villarini and 

Krajewski (2009a) extended this work by proposing parametric functions to describe the 

correlations in the random component as 

 (         ⌈ 
 

  
⌉
  

 Equation V-4 

where    is the nugget effect that characterizes the small-scale variability of the process 

and/or measurement errors,    represents the correlation length,    is the shape parameter 

that controls the shape of the fitted correlation function at the origin, and x is the 
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separation distance.  Although parametric forms exist for the temporal correlation 

structure of random errors, they were not incorporated into the ensemble rainfall 

generator for the reasons described by Villarini and Krajewski (2009a). 

The generation of ensemble radar-rainfall fields can be summarized as follows: 

(1) the reference rainfall field was corrected for conditional bias using equation (2); (2) 

an ensemble of spatially correlated Gaussian fields with a unit mean and standard 

deviation conditional on the reference rainfall field was then generated using the 

Cholesky decomposition method; and (3) the correlated Gaussian fields were then 

multiplied with the bias corrected reference field from step (1) to obtain an ensemble of 

equally probable rainfall fields.  It should be noted that in the random error fields (step 2), 

any pixels with negative values are set to zero to avoid unrealistic rainfall values in step 

3.  More details about the radar error model and the rainfall generator were presented by 

Ciach et al. (2007) and Villarini and Krajewski (2009a). 

In this work, I use as “reference” the Stage IV rainfall map products provided by 

the National Weather Service.  Since, by construction, the radar-rainfall error model is 

specific to a radar-rainfall product, this raises the issue of whether the parameter values 

are appropriate for this product.  Since the Stage IV dataset is corrected to match rain 

gauge accumulations, I considered it to be free of overall bias; therefore, I set    to 1.0.  I 

can also argue that the overall character of the microphysical rainfall processes in Iowa, 

especially in the summer convective storm, is similar to that in Oklahoma.  In support of 

this argument, I cite a study by Seo and Krajewski (2010) which shows a similar behavior 

of the random error dependence on rainfall magnitude.  Another potential issue with the 

transferability of the Ciach et al., (2007) results is the fact that their model is valid for a 

single radar whereas Stage IV is a multi-radar product.  While, in principle, combining 

data from multiple radars reduces the random radar error, in our case, all radars that cover 

the Cedar and Iowa River basins do this at a far range, where errors are significant.  To 

partially mitigate the problem of strict applicability of the radar-rainfall model to our 
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study area, I define and consider seven different scenarios of radar rainfall error and 

generate 50 ensembles for each one.   

Results and Discussion 

Radar error structure scenarios 

Table 2 presents the rainfall error scenarios that resulted from different conditions 

of radar-rainfall error structure, which were conceptualized to allow the independent 

evaluation of the impacts of different aspects of the deterministic and random 

components of the rainfall error structure.  All the parameters were empirically estimated 

by Villarini and Krajewski (2009a) and Ciach et al. (2007) for Oklahoma using a highly-

dense rain gauge network.  For this study, I systematically altered the original Oklahoma 

parameter values to obtain different error structure scenarios.  I considered a total of 

seven rainfall error scenarios in this study (Table 2).  As mentioned in section 3.1, the 

rainfall ensemble is obtained by imposing Gaussian random error fields on the bias 

corrected reference rainfall fields.  For each scenario, I used the generator to produce an 

ensemble of 50 equally probable rainfall fields.   

In scenarios 1 through 4, I focus only on the structure of the random errors.  That 

is, I set the parameters a and b that control the deterministic distortion (conditional bias 

correction) to 1 and varied the parameters that control the standard deviation and spatial 

correlation structure of the random errors (Table 2).  In scenario 1, the standard deviation 

of the random errors is equal to 0.2 (which is small), and the fields are characterized by 

an exponential spatial correlation structure.  The parameters of the correlation function 

are the same as those reported by Villarini and Krajewski (2009a).  Scenario 2 consists of 

random errors whose standard deviation is a function of the reference rain value, but the 

errors are not correlated in space.  Scenario 3 is characterized by random errors that are a 

function of reference rain and are correlated in space.  Scenario 4 contains the same error 

standard deviation as scenario 3 but with a longer correlation distance in space.  
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Scenarios 5 and 6 present the same random error structure as scenario 3 but also contain 

deterministic error that increases as reference rain rate increases.  For scenario 5, radar 

overestimates the real rain, and for scenario 6, radar underestimates the rain.  Scenario 7 

uses the parameters empirically estimated for the Oklahoma radar (Ciach et al., 2007). 

Figure V-1 shows the time series of the accumulated mean areal precipitation 

(AMAP) for all ensemble members and scenarios for the 2008 event, along with the 

reference AMAP (black line) and the median of the ensemble (dotted line).  Different 

uncertainty scenarios translate into a different spread of the ensemble AMAP.  Plots 2(a) 

to 2(g) are for the Cedar River basin and scenarios 1 to 7.  Plots (h) and (i) are for the 

Iowa River basin, scenarios 2 and 5.   

For the scenarios with no deterministic error, I would expect the median of the 

AMAP of the ensemble to be equal to that of reference rainfall.  However, this is not 

always the case due to: (1) the effect of the non-negative rainfall condition imposed on 

the random error fields; (2) the interplay between the spatial correlation scale of the 

random error and the basin scale and shape; and (3) the skewness of the rainfall 

distribution combined with the non-linear character of the error model since, for some of 

the scenarios, random error is a non-linear function of the rain rate.  These effects can be 

visualized in Figure 3-2 (a) that presents a schematic representation of the 

transformations that are made to the measured rainfall field to generate rainfall 

ensembles.  Figure 3-2 (b) presents the deterministic distortion function for all scenarios 

as a function of rain rate.  We can see that the distortion for the empirical scenario is 

smaller than the one defined for scenarios 6, that underestimate rainfall, and scenario 5, 

that overestimate rainfall.  Scenarios 1, 2, 3 and 4 are free of deterministic distortion.  

Figure 3-2 (c) presents the standard deviation of the random error as a function of the 

observed rain rate.  In this case random error decreases with rain rate.  The spatial 

correlation of the random component is presented in Figure 3-2 (d).  Scenario 4 presents 

the highest correlation in space. 
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For scenario 1, the spread in AMAP is very low since random errors are 

unconditional and are characterized by a small standard deviation of 0.2.  Scenario 2 has 

larger, and more realistic, random errors that are conditional on the rain rates.  However, 

the spread in the ensemble is still comparable to that of scenario 1 because of the lack of 

spatial correlation in the errors.  The shift between the AMAP of the ensemble and that of 

reference rainfall is due to the reasons described in the previous paragraph (non-negative 

error fields and non-linear interaction of the error model with the rain rates).  For 

scenarios 3 and 4, the introduction of correlation in space increases the scatter in AMAP 

due to the persistence in the error signal over a certain domain.  The difference in the 

range of AMAP for scenarios 3 and 4 is very small.  Scenarios 5 and 6 contain a 

deterministic component in addition to the random errors.  For scenario 5, radar 

overestimates rainfall values, but for scenario 6, radar underestimates rainfall values.  

The same random error structure is applied for both scenarios; however, the spread for 

scenario 6 is larger than the spread for scenario 5.  I also present two scenarios, 2 and 5, 

for the Iowa River basin, for which similar patterns are observed.  

While it is probable that none of the scenarios I have considered represents the 

reality, collectively they allow us to develop a better understanding of the radar-rainfall 

uncertainty on basin-scale rainfall.  The results demonstrate that the rainfall generator 

employed in this work is a useful tool to develop rainfall uncertainty scenarios for the 

hydrologic error propagation studies.  The generated rainfall fields will allow us to map 

rainfall uncertainty to the response of the hydrological system. 

Validation of hydrological simulations 

Before I used our hydrologic model to study the effects of uncertainty propagation 

of the rainfall input, I needed to establish that the model accurately represents the 

hydrologic response to heavy rainfall.  I did this by evaluating the model’s performance 

using observed streamflow data for 24 sites in the Iowa area and by comparing the 
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simulated streamflow with that generated by a semi-distributed version of the SAC-SMA.  

Since 1960, the Sacramento soil moisture accounting model (Burnash, 1973) has been 

used by most of the NWS River Forecast Centers as the main flood prediction model 

(Welles at al., 2007).  The model is classified as deterministic, continuous, and non-

linear.  SAC-SMA contains parameters that describe the rainfall-runoff and evaporation 

dynamics as well as parameters that describe channel flow transport between two sub-

basins (Ajami et al., 2004).  In the semi-distributed version, one set of parameters is 

calibrated for each sub-basin using 6-hour mean areal precipitation (MAP) products 

produced by the National Weather Service (Johnson et al., 1999).  The model uses 

fourteen parameters to describe the rainfall-runoff processes and two parameters to 

describe channel routing, if the kinematic wave method is used.  

In Table 3, I present goodness-of-fit statistics for both models.  I begin with the 

mean streamflow values based on observations, CUENCAS simulations, and SAC-SMA 

simulations.  I then present the correlation coefficient and the Nash-Sutcliffe coefficient 

for both models (Nash and Sutcliffe, 1970).  I present these statistics since they are 

commonly used to evaluate the results of hydrological models (Krause et al., 2005).  

However, they do not provide a comprehensive overview of how well simulated values 

fit observed data.  Based on these evaluation statistics, I conclude that both models 

represent a very similar level of performance. 

Figure V-3 and Figure V-4 present the observed and simulated hydrographs 

produced by CUENCAS and SAC-SMA for all streamflow sites in the Cedar River and 

Iowa River basins, respectively.  I normalized the hydrographs by the mean annual flood 

that is used as an approximation for the bankfull discharge (red line) (Leopold et al. 

1964).  The mean annual flood was calculated as a function of drainage area using USGS 

historical data for the Cedar and Iowa Rivers.  Values above this line approximate flow 

levels above the riverbank.  The area of each site is shown in the left corner, while the 

statistics and the site number (refer to Figure I-1 are shown in the right corner.  In the 
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plots, dark blue lines represent the observed hydrographs, black lines show discharge 

simulated by CUENCAS using the reference rainfall, light blue lines show the 

hydrographs simulated by SAC-SMA, and red lines indicate mean annual flood.  

Differences between observed and predicted streamflow are due to uncertainties in the 

input, output, and model formulation and parameterization. 

If rainfall input and observed streamflow are used to calibrate model parameters, 

uncertainties due to the different factors cannot be isolated.  Since I did not calibrate our 

model parameters, I will demonstrate in this study that, depending on the basin area and 

on the error structure of the radar rainfall data, uncertainties due to input uncertainty can 

be as large as the discrepancies between simulated and observed streamflow.  

As mentioned before, I use the Stage IV rainfall dataset provided by the NWS as 

input to the hydrological model.  In another study, we demonstrate the existence of an 

undesirable feature in this dataset that arises from the merging of radars with different 

calibration offsets.  The feature (due to radar miscalibration) is located at the equidistance 

zone between the KDMX and KDVN radars.  We corrected this dataset using the results 

presented by Seo et al. (2012) and demonstrate the improvements in the hydrological 

prediction for the sites located in the affected area of the Cedar River basin (CR-10, 9, 

and 11).  

It is important to point out that CUENCAS was not calibrated to fit the 

hydrographs at specific locations.  In this sense, sometimes the model is able to reproduce 

the peak of the event rather well but is not able to correctly reproduce the time to peak 

(e.g. CR-7).  In such cases, the performance statistics are reduced dramatically.  When 

the model is calibrated to fit a specific hydrograph, the timing of the response is probably 

the most important criterion since it has a significant impact on the commonly used 

mean-square error objective functions.  Another important aspect is the presence of 

uncertainties in the streamflow observations.  Many of the streamflow time series 

presented long periods of missing data (e.g. CR-8, CR-2, CR-5).  To be able to estimate 
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the statistics using observed time series containing missing values, I adopted a simple 

linear interpolation procedure to fill the gaps in the time series.  

Values of the performance statistics are higher for the Cedar Rapids basin for both 

models.  The lower values for the Iowa River basin are probably due to a large number of 

sites for small drainage areas and a large number of sites that experienced the backwater 

effect, which is not accounted for in the formulation of channel dynamics of both 

hydrological models.  Another reason could be due to the spatially correlated errors on 

the input data that have a large effect over small basins.  Better performance is expected 

for large basins since small-scale error and variability are averaged out by the effect of 

the river network.  In general, I deem the results of the non-calibrated model acceptable 

in the context of this work. 

Figure V-5 presents the observed and simulated peak flows versus drainage area 

for the Cedar River 3(a) and the Iowa River 3(b).  Throughout this work, the simulated 

peak flow values obtained with Stage IV data will be referred to as reference value (  
   ).  

The line in orange represents the mean annual flood, and the observed values are above 

this line for all sites.  The line in red corresponds to a nonparametric regression between 

peak flow and drainage area.  The simulated and observed peak flow values follow the 

same scaling patterns.  Streamflow observations present many missing data, especially 

during the time of highest flow (e.g. Figure V-4, sites CR3 and CR8).  Therefore, the 

direct comparison of the observed and simulated results based just on the peak flow 

values can be misleading.  Unfortunately, there are no observed data for small scale sites 

to confirm the validity of the scaling relationships for small areas.  The site with the 

smallest area is located in the Iowa River (IR-1 with approximately 22 km2 of drainage 

area).  
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Analysis of error propagation  

The hydrological model is executed using each rainfall error scenario listed in 

Table 2 as input to obtain an ensemble of streamflow hydrographs.  I evaluate the rainfall 

error effects on hydrological prediction by comparing the ensemble of simulated 

hydrographs and the corresponding peak flows with the streamflows obtained using the 

reference rainfall.  I also evaluate peak flow variability for each rainfall scenario 

ensemble and how it changes with basin drainage area.  

Comparisons with the USGS streamflow observations 

I propagate the resulting ensemble rainfall maps through the hydrological model 

to produce ensembles of flood hydrographs.  Results obtained for the Iowa River and 

Cedar River basins are presented in Figure V-6 and Figure V-7, respectively.  Both 

figures present results for error rainfall scenarios 2 (a) and 5 (b).  Scenario 2 consists of 

random errors not correlated in space, and scenario 5 presents random errors correlated in 

space and deterministic bias.  For the sake of simplicity and brevity, I opted to include 4 

hydrographs for Iowa River and 6 hydrographs for Cedar River out of the total of 24 

simulated hydrographs.  The selected hydrographs cover a wide spectrum of basin areas 

and are spread around the study area.  

Figure V-6 and Figure V-7 use the same symbol convention as Figure V-3 and 4, 

with the addition of gray shadows that represent the range of values simulated by 

CUENCAS using the 50 ensembles of rainfall.  The range of values represented by the 

gray shadowed region represents uncertainty in streamflow simulation as a result of 

uncertainty in rainfall.   

For the Cedar River basin in Cedar Rapids, the hydrograph ensemble reflects the 

findings of the evaluation in terms of AMAP for scenario 2: small spread and a bias 

between the median of the ensemble and the reference dataset.  For scenario 5, which 

considers the radar overestimate rainfall, peaks were reduced across scales and some 
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spread is still observed at the scale of the Cedar River basin.  Comparing both scenarios, 

we can see that the spread for the Cedar River is much smaller for scenario 2 than for 

scenario 5.  However, when we look at the small-scale sites, the spread for scenario 2 is 

larger.  This demonstrates that streamflow uncertainty scale dependency changes for 

different characteristics of rainfall error structure.   

In Figure V-8, I present the relative difference between the ensemble and the 

reference areal mean accumulated rainfall (plots a and b) and maximum rainfall intensity 

(plots c and d), for scenarios 2 and 5, for all the USGS sites in the Iowa and Cedar River 

basins.  The spread for areal mean accumulated rainfall is small since in this case the data 

was aggregation in space and time, and random errors canceled out.  On the other hand, 

we observe significant variability for the maximum rainfall intensity for each watershed.  

Due to the purely random character of scenario 2, variability in areal mean accumulated 

rainfall and maximum rainfall intensity decreases with drainage area.  Rainfall variability 

also decreases with drainage area for scenario 5, but some spread is still observed for the 

largest basin due to the spatial correlation of the random error.  These errors are 

propagated through the hydrological model.  In Figure V-9’s plots (e) and (f), I present 

the relative difference between simulated peak flow using the reference rainfall (black 

dots) and the ensemble rainfall (gray dots) and observed peak flow for the same 

scenarios.  The variability observed in simulated peak flow reflects the one observed for 

maximum rainfall intensity. 

Figure V-9 presents the difference between the simulated peak flow and observed 

peak flow.  For some of the basins, the difference is around 50%.  It is important to point 

out that a considerable part of these differences might be the result of inconsistencies in 

the series of observed streamflow.  Due to the extreme magnitude of the event, many of 

these stream gauges malfunctioned or even stopped working during the periods of large 

flow.  Another source of error in streamflow is due to the extrapolation of the rating 
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curves.  Some of the sites experienced water levels much higher than the maximum water 

levels used to determine the rating curve.   

The results presented in this section demonstrate the dependence of the error on 

basin area.  However, due to the limited number of points, it is difficult to understand 

how errors change with scale for different scenarios.  In the next section, I present a more 

comprehensive analysis involving results for all links in the river network and a relative 

measure of the dispersion of the flow ensemble. 

Peak flow structure in the river network 

In this section, I evaluate the range of simulated peak flow for all the links in the 

river network using a normalized measure of peak flow spread.  For each link in the 

watershed, I calculate the difference between the 95th (      and 5th (      percentiles 

of the ensemble flow values normalized by the median (      ensemble flow value: 

    
        

    
 Equation V-5 

I also calculated the normalized difference between the median ensemble value 

and the reference peak discharge (  
   ): 

  
  

       
   

  
    Equation V-6 

These results are presented in Figure V-9 for all the rainfall error scenarios and 

basin scales ranging from hillslopes (<0.1 km2) to the total basin area (~16,000 km2).  

    represents the extension of the streamflow uncertainty band at the time of peak for 

each site.  Bias in the average AMAP does not affect this variable, since it is independent 

of the reference.  Values equal to one mean that the error band extension is as large as the 

median of the peak flow simulation.  Values equal to zero mean that rainfall data is 

“error-free” or that errors do not affect streamflow prediction for that specific site.  I 
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added a non-parametric regression line to the plots in order to demonstrate the tendency 

of these values to decrease with basin area.   

For scenarios 1 and 2, values of     tend to zero as the basin area increases.  This 

means that as the basin area increases, small-scale uncertainties are filtered out by the 

aggregation effect of the river network.  This happens when the random errors are small 

or not correlated in space.  For random errors that are spatially correlated (SC-3), the 

network was able to filter part of the uncertainty.  In this case, the error bar for the outlet 

of the basin has an extension of approximately 0.4 times the median of the simulated 

peak flows.   

Higher spatial correlation (SC-4) caused a slight increase in the error bar for the 

outlet (~0.45).  These demonstrate that the spatial correlation of precipitation errors 

reduced the rate at which errors decreased with drainage area, as has been demonstrated 

by Nijssen (2004).  For the scenarios with deterministic error, the extension of the error 

bar does not change significantly compared to SC-3 that presents the same random error.  

In this case, the error bar just shifts up or down, depending on whether radar 

overestimates (SC-5) or underestimates (SC-6) rainfall. 

For small scales,     presents a high range of values.  For basin areas close to the 

hillslope area, it can go from 0.4 to more than 3 for SC-2.  This means that small-scale 

basins can go from a situation of receiving almost no water to receiving a large amount of 

water.  The uncertainty for small scale basins will depend on the rainfall characteristics 

for the specific area, the rainfall error structure, and the properties of the basin.  

The   
  (green dots in Figure 6) represents the bias in the ensemble rainfall field 

compared to the reference.  Scenarios without deterministic error should not present any 

bias for large basin areas, but, due to the reasons previously described, the rainfall 

ensemble generator introduces bias into mean rainfall for some of the cases.  For SC-5, 

radar overestimates rain rates, and this is reflected in a negative value of   
  (     

  
   ).  For this scenario, the random component of the error might overcome the 
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deterministic component, and   
  is positive or close to zero in these cases.  For SC-6, 

radar underestimates rainfall, and the effect of random error is not so important since 

     is always larger than   
   .  The last two plots of Figure 6 show results for scenarios 

2 and 5 for the Iowa River basin.  The same conclusions hold for this basin. 

For scenario 7, which is closest to the error model reported by Villarini and 

Krajewski (2009a), parameters were empirically estimated based on Oklahoma data (SC-

7) and radar overestimates rainfall with the bias increasing non-linearly with rain rate.  

Based on the rainfall error model parameters, we can see that the deterministic error just 

affects rain rates larger than 10 mm/h.  Since the number of pixels with a rain rate larger 

than 10 mm/h is low, the effect of deterministic error in this case is smaller than it was 

for SC-5, for which the deterministic correction also affected small rain rates. 

Conclusions 

In this study, I propagated radar derived rainfall uncertainties through a fully 

distributed hydrological model.  I used a calibration-free hydrological model.  I evaluated 

different sources of error that are likely to occur when precipitation is estimated using 

radar observations of rainfall. 

I found that flood peak uncertainty is sensitive to both the deterministic and 

random components of rainfall error.  The effect of the random component is filtered out 

by the aggregation effect of the river network, and uncertainty decreases as catchment 

area increases.  When the random error is not correlated in space, error variability for 

small scales is very large, with uncertainty bands that vary from 0.4 to more than 4 times 

the reference peak flow discharge.  However, uncertainty decreases considerably with 

basin areas, and peak flow error for the outlet of the Cedar River basin is practically 

negligible (this result is consistent for all the 50 ensemble members).   

When rainfall errors are correlated in space, the process of aggregation and 

attenuation by the river network is not as effective at filtering out uncertainties, and error 
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bands at the scale of approximately 17,000 km2 are still significant.  For a very small 

random error independent of rain rate, 10% error is still present for the Cedar River in 

Cedar Rapids.  For larger random errors dependent upon rain rate values, uncertainties 

are on the order of 45% of the reference value.   

The deterministic component of the error tends to produce a shift in the value of 

simulated peak flow up or down, but the width of the error band is still determined by the 

magnitude of the random error component and its spatial correlation.  It is important to 

point out that these results mark the first step towards understanding how rainfall errors 

propagate through a hydrological model and affect flood prediction across a large range 

of scales.  Some conclusions are general and can be applied qualitatively for any radar 

with an error structure similar to the one applied here.  However, quantitative error 

assessment depends on the specific radar-rainfall estimation algorithm and, thus, error 

model parameters for the radar and area of interest. 

Our results are limited to the effect of hourly rainfall accumulation given on a 4 

km by 4 km grid.  Higher resolution of radar rainfall is unlikely to change our 

conclusions for the larger scales, but it may influence the scale where the errors begin to 

rapidly decrease.  Much work remains to be done before we can comprehensively 

understand the propagation of uncertainty in the hydrologic prediction of rainfall. 

This work accomplishes the primary goal of demonstrating the importance of using a 

calibration-free model to investigate the effect of input uncertainty on hydrological 

prediction by showing that a consistent modeling implementation provides an unbiased 

interpretation of the effect of errors in input data.  The study also demonstrates that radar-

rainfall uncertainty should be estimated independently of hydrologic models.  Specialized 

networks of rain gauges and other in situ instruments are needed to provide an 

independent reference against which radar-rainfall estimates can be evaluated.  In 

addition, by performing an evaluation of the results using a large number of nested sites 
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within the main basin, I have shown that streamflow sensitivity to input errors varies as a 

function of basin scale. 
 

Table V-1. Rainfall error scenarios considered in this study.   

  Basins CR CR, 
IC CR CR CR, 

IC CR CR 

Equation Par. SC1 SC2 SC3 SC4 SC5 SC6 SC7 

Deterministic 
bias 

a 1 1 1 1 1 1 1.34 
b 1 1 1 1 0.84 1.15 0.84 

Random error 
– standard 
deviation 

c 0.2 0.45 0.45 0.45 0.45 0.45 0.45 
d 0 0.59 0.59 0.59 0.59 0.59 0.59 
e 0 -0.62 -0.62 -0.62 -0.62 -0.62 -0.62 

Random error 
- spatial 
correlation 

C1 1 0 1 1 1 1 1 
C2 37 0 37 60 37 37 37 
C3 0.39 0 0.39 1 0.39 0.39 0.39 
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Table V-2. Statistics for CUENCAS and the Sacramento model 

Sites Information Model evaluation  

Basi
n 

Id 
map 

USGS 
ID Site Name Area 

Mean Correlation Nash-Sutcliffe 
Obs. C* SAC C* Sac C* SAC 

CR 1 5457000 
Cedar River near Austin, 
MN 1033 45.8 46.1 41.0 0.9 0.9 0.8 0.8 

CR 2 5457700 
Cedar River at Charles 
City, IA 2728.7 169.3 196.7 147 0.8 1.0 0.6 0.9 

CR 3 5458000 
Little Cedar River near 
Ionia, IA 792.2 65.4 68.1 54.8 0.9 0.9 0.8 0.7 

CR 4 5458300 
Cedar River at Waverly, 
IA 4005 284.0 298.3  0.9  0.8  

CR 5 5458500 
Cedar River at Janesville, 
IA 4300.1 319.3 319.4 245.7 0.9 0.9 0.9 0.8 

CR 6 5459500 
Winnebago River at 
Mason City, IA 1361.8 79.6 91.5 56.2 0.8 0.8 0.0 0.5 

CR 7 5462000 
Shell Rock River at Shell 
Rock, IA 4520.2 274.1 320.0 224.5 0.8 1.0 0.4 0.9 

CR 8 5458900 
West Fork Cedar River at 
Finchford, IA 2190.2 164.5 153.4 151.8 0.6 0.7 -0.1 -0.3 

CR 9 5463000 
Beaver Creek at New 
Hartford, IA 898.3 75.0 69.3 53.1 0.8 0.4 0.6 0.5 

CR 10 5464220 
Wolf Creek near Dysart, 
IA 774.1 67.2 52.5  0.8  0.6  

CR 11 5463500 
Black Hawk Creek at 
Hudson, IA 784.4 64.0 47.9 45.0 0.8 0.9 0.6 0.8 
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Table V-2 Continued 

CR 12 5464000 
Cedar River at Waterloo, 
IA 13322.4 883.2 933.6 754.2 0.9 1.0 0.8 0.9 

CR 13 5464500 
Cedar River at Cedar 
Rapids, IA 16853.6 1331 1178.3 980.4 0.9 1.0 0.8 0.8 

IC 1 5451210 
S. Fork Iowa River NE of 
N. Prov, IA 579.9 51.6 40.8  0.8  0.2  

IC 2 5451500 
Iowa River at 
Marshalltown, IA 3966.2 286.3 268.3 275 0.9 1.0 0.2 0.8 

IC 3 5451700 
Timber Creek near 
Marshalltown, IA 305.5 41.0 23.5 23.7 0.9 0.9 0.7 0.6 

IC 4 5451900 
Richland Creek near 
Haven, IA 145.2 8.1 7.5 11.0 0.6 0.6 0.2 0.2 

IC 5 5452200 
Walnut Creek near 
Hartwick, IA 183.6 9.3 9.2 12.9 0.6 0.7 0.3 0.5 

IC 6 5453000 
Big Bear Creek at 
Ladora, IA 489.3 31.6 22.5 30.3 0.7 0.7 0.4 0.5 

IC 7 5453100 
Iowa River at Marengo, 
IA 7233.3 613.0 470.1 513 0.8 0.7 0.2 0.4 

IC 8 5454090 
Muddy Creek at 
Coralville, IA 22.5 1.6 1.5  0.6  0.3  

IC 9 5454000 
Rapid Creek near Iowa 
City, IA 65.5 3.4 3.9  0.4  -0.2  

IC 10 5454220 
Clear Creek near Oxford, 
IA 151.2 10.5 10.5  0.9  0.5  

IC 11 5454300 
Clear Creek near 
Coralville, IA 254 21.8 14.7 6.7 0.7 0.7 0.5 0.3 

C* - CUENCAS 
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Figure V-1. Accumulated mean areal precipitation for the 7 rainfall error scenarios for the 
Cedar and Iowa Rivers 
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Figure V-2. (a) Schematic representation of the deterministic and random 
transformations; (b) Deterministic scenarios; (c) random scenarios; (d) spatial 
correlation scenarios 
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Figure V-3. Observed (dark blue line) and simulated hydrographs produced by 
CUENCAS (gray line) and SAC-SMA (light blue line) models for the Iowa 
River basin.  The basin drainage area is presented on the left side, and the site 
number (refer to Figure 1) and Nash coefficients are presented on the right 
side (CUENCAS, SAC-SMA). 
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Figure V-4. Same as Figure 3 for the Cedar River basin
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Figure V-5. Peak flow scaling for the Cedar and Iowa Rivers.  Gray dots are simulated by 
CUENCAS, dark blue observed, and light blue simulated by SAC-SMS. The 
red line was obtained by non-parametric regression between drainage area and 
peak flow simulated by CUENCAS.  The orange line represent mean annual 
flood 
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Figure V-6. Hydrographs for 4 sites on the Iowa River showing results of the simulation 
for rainfall error scenarios 2 (a) and 5 (b).  The discharge is normalized by 
mean annual flood.  The dark blue line represents observed hydrographs; the 
black line is simulated by CUENCAS using the reference rainfall; the gray 
shadow represents the lowest and highest values for the ensemble hydrographs 
simulated by CUENCAS using the 50 ensembles of rainfall; the dash gray line 
is the median of the ensemble; the light blue line represents the hydrographs 
simulated by SAC; and the red line reflects mean annual flood.  



www.manaraa.com

157 
 

 

 

Figure V-7. Same as Figure 6 for 6 sites in the Cedar River basin.  
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Figure V-8. Relative differences between the ensemble and the reference areal mean 
accumulated rainfall (a and b) and maximum rainfall intensity (c and d).  Plots 
e and f presents the relative difference between simulated peak flow using the 
reference rainfall as input (black dots) and the ensemble rainfall (gray dots) 
and observed peak flow.  Plots a, c, and e are for scenario 2, while plots b, d, 
and f are for scenario 5, Cedar River basin. 

 



www.manaraa.com

159 
 

 

 

Figure V-9. Gray dots: difference between the 95th (      and 5th (     percentile 
ensemble flow values normalized by the median (      ensemble flow value; 
Green dots: normalized difference between the median ensemble value and 
the reference peak discharge (  

   )   



www.manaraa.com

160 
 

 

CHAPTER VI IMPLICATIONS OF PRECIPITATION RESOLUTION AND 

SAMPLING INTERVAL FOR PEAK FLOW SIMULATION  

Introduction 

In the previous chapter, I investigated how radar rainfall errors that are 

propagated through the hydrological model affect peak flow simulations.  Errors in radar 

rainfall are mainly caused by a weakness in the relationship between the measured 

variable (reflectivity) and rainfall.  This type of error is denoted retrieval error and is 

common to all technologies that indirectly measure rainfall.  In the case of weather radar, 

the standard procedure is to use a power law relationship between reflectivity and rainfall 

rate (Z-R).  In the case of satellite rainfall, no unique approach exists and multiple 

remote-sensed products (e.g. infrared, microwave) and retrieval algorithms are used.  

Ebert et al. (2007) present a list of 7 different satellite-based rainfall products that are 

freely available through the Internet.  Five of these products combine infrared and passive 

microwave data and two are infrared only.  All seven products are based on different 

retrieval algorithms.   

Due to the large number of different satellite-based rainfall products available, 

each one based on a different approach, I will not focus on estimating the expected 

retrieval errors of each one of these products.  Moreover, current capabilities are about to 

change significantly with the launch of the new instruments proposed by the Global 

Precipitation Mission.  With GPM in mind, many research groups are also concentrating 

their efforts on the development of new algorithms specially designed to use the new 

information generated by GPM (Le et al., 2010; Newell et al., 2010; Seto and Iguchi, 

2011).  These algorithms, together with different measurement technologies and a higher 

sampling frequency, have the potential to significantly improve current capabilities  

Therefore, in this study, I focus on understanding the effects of known satellite-

based rainfall limitations that will still be part of the new system and that might be critical 
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for flood simulation.  Besides retrieval errors, the main sources of error in satellite based 

rainfall datasets are low temporal sampling frequency and coarse spatial and temporal 

resolution (McCollum et al., 2002; Hossain and Lettenmaier, 2006; Nikolopoulos and 

Anagnostou, 2010; Li et al., 2011).  I independently investigate the effects of these two 

error components on flood simulation across scales.  

Chapter 5 provided insight in terms of how rainfall retrieval errors propagate 

through hydrological models.  Even though the study presented in that chapter focused on 

weather radar rainfall error structure, the multiple scenarios of rainfall error structure 

investigated were based on error properties that are common to any remotely –sensed 

rainfall dataset: deterministic and random errors that are correlated in space.  I opted not 

to apply the ensemble satellite-based rainfall generator available in the literature 

(Bellerby and Sun, 2005; Hossain and Anagnostou, 2006) since they require the use of 

reference rainfall datasets, usually radar, for parameter calibration.  Rain gauge datasets 

can be used, but very few regions in the world present a dense enough rain gauge 

network that can provide quality information about the spatial characteristics of rainfall.  

As was demonstrated in Chapter 5 and will also be discussed in Chapter 7, radar data is 

not error free and care should be taken when using these datasets as a reference to 

evaluate remote sensing products.  

In this chapter, I evaluate the effects of coarse spatial and temporal resolution and 

infrequent temporal sampling on peak flow simulation across scales.  The fundamental 

questions I address are: 

1. How does rainfall’s spatial and temporal resolution affect flood prediction across 

scales?  Is there a scale for which remote sensing with currently available space-

time resolution can provide useful information for flood prediction? 

2. Can rainfall products obtained from infrequent observations be used for flood 

prediction?  Does the error caused by infrequent sampling change with basin 

scale? 
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The temporal and spatial resolutions of input datasets are known to affect 

hydrological predictions (Shah et al., 1996; Liang and Guo, 2004; Fu et al., 2011).  This 

impact has been shown to be scale dependent (Lopes, 1996).  Faures et al. (1995) 

demonstrated the importance of correctly representing spatial rainfall variability to 

simulate flood events in the Walnut Gulch watershed.  The authors also showed that 

uncertainties are scale dependent and increase as basin scale decreases, due to dampening 

effects.  Satellite information is usually provided in resolutions that are recognized as too 

coarse for small to medium scale hydrological applications.  For example, the resolution 

of the TMPA-RT and PERSIANN products is five times the NWS Stage IV radar 

resolution (0.25°x0.25°) and fifteen times the super-resolution radar product available for 

the period after Jun 2008 (Seo and Krajewski, 2010).  CMORPH presents better spatial 

and temporal resolution (0.07° x 0.07°) since it uses morphing techniques, combined with 

IR data, to propagate in space and time the precipitation derived from the PMW 

estimation of rainfall.  The product with the best resolution is the HYDRO-estimator with 

4 x 4 km resolution, but in this case only IR measurements are used and products are only 

available to the US.  In this study, I systematically investigate how errors due to rainfall 

resolution affect flow prediction across a large range of basin scales.  Our goal is to 

estimate for which scales remote sensing can provide useful information for flood 

prediction.  

With the current constellation of microwave satellites, passive and active 

instruments typically pass over the same location less than twice a day.  GPM promises to 

increase this to a frequency of 3 hours for 90% of the time.  Infrared (IR) measurements 

obtained by a geostationary satellite are used to fill the gaps between consecutive visits.  

However, the relationships between IR measured variables, expressed by different cloud 

indices, and rainfall are not so strong, and retrieval errors tend to be very large.  Passive 

and active microwave data obtained by low earth orbit satellites display significantly 

more physical direct relationships to rainfall than geostationary cloud indices (Iguchi et 
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al., 2002).  The effect of sampling errors will depend on the temporal and spatial 

characteristics of the storm.  It is most likely that with current capabilities, satellite 

remote sensing cannot be used to predict small-scale rainfall events.  However, these 

technologies are probably valuable to predict floods with medium to large magnitudes, as 

in the case of the Iowa flood event that occurred in 2008, and I will evaluate the effects 

that sampling has on predicting this extreme flood event.   

In this chapter, I do not include a description of the study area or of the 

hydrological model, since these topics were already discussed in Chapter 1 and Chapter 

2, respectively.  In the next section, I describe the rainfall dataset used in this study.  I 

then describe the simulation framework used to independently evaluate the effects of 

coarse rainfall resolution and low frequency sampling interval on flood simulation across 

scales.  I conclude with a summary of the limitations of the proposed approach and a 

discussion of future work. 

Dataset - rainfall 

In this study, I used the rainfall dataset produced by Seo et al (in preparation) and 

an offline version of the Hydro-NEXRAD system.  The motivation for the production of 

this dataset was the identification of inconsistencies in the Stage IV data due to different 

calibration offsets (i.e. relative calibration bias) among radars that cover the same region.  

These offsets cause systematic artifacts that are observable in radar-rainfall maps because 

most merging methods currently implemented (e.g. Lin and Mitchell, 2005; Zhang et al., 

2011; Seo et al., 2011) are likely to disregard the systematic differences among radars.   

Seo et al (in preparation) propose a method to minimize the effects of these 

undesirable systematic features.  The method is based on the results presented in Seo et 

al. (2012) with the generation of customized radar-rainfall estimates using the Hydro-

NEXRAD system (Krajewski et al., 2011; Kruger et al., 2011; Seo et al., 2011).   
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In this analysis, I used Hydro-NEXRAD data with the same spatial and temporal 

resolution (60 minutes in time and 4 km in space) as the Stage IV dataset.  Chapter 7 

provides more details about the method used to generate the Hydro-NEXRAD dataset. 

Methodology 

As indicated in the introduction, the error structures of near-future satellite-based 

rainfall products are yet to be defined and will depend on many factors, including 

improvement of retrieval algorithms and sampling frequency.  The error structure of 

future products will not correspond to the current products since algorithms will not be 

the same and the sampling frequency of microwave sensors will increase considerably.  

For the aforementioned reasons, I will not perform an extensive statistical evaluation of 

currently available products, but I will provide insight into the expected errors, taking 

into consideration such basic characteristics of these datasets as spatial and temporal 

resolution or sampling frequency. 

I performed the following steps in this work:  

 To estimate the effects of coarse spatial resolution on flood prediction, I 

aggregated the original rainfall fields to spatial resolutions similar to the ones 

provided by remote-sensed rainfall products or to the resolution adopted by land 

surface models (NLDAS-2).  I forced the hydrological model with the aggregate 

(in space) and integrated (in time) rainfall maps.  I compared peak flow simulated 

based on the high-resolution dataset (NH3-5min in time, 1km in space) to those 

obtained based on the degraded datasets. 

 The effects of sampling errors are more difficult to evaluate since instantaneous 

rainfall fields are not available.  Because instantaneous rainfall fields are 

unknown, I used the available radar rainfall dataset that consists of accumulated 

rainfall for the period of 60-min intervals to generate 3-hour resolution rainfall 

maps that mimic the properties of satellite products based on PMW.  For each 
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interval of 3 hours, I randomly sampled n-values of the 60 minute rainfall maps to 

simulate n-samplings of the satellite in each interval.  

Results and Analysis 

Impact of coarse spatial and temporal resolution 

In this section, I evaluate the effects of spatial and temporal rainfall resolution on 

flood simulation.  I first aggregated the radar data to spatial scales that correspond to 

common satellite rainfall products: from ΔS=0.05’ (radar Stage IV) to ΔS=0.1’, 

ΔS=0.15’, and ΔS=0.25’.  Next, I integrated the information in time from 1 to 3-hour 

resolution that also corresponds to remote sensing products.  I forced the hydrological 

model using different resolution products and compared the results to the reference 

simulation. 

Figure VI-1 presents the relative difference in peak flow due exclusively to the 

spatial effect (first line) and the spatial and temporal effects (second line).  A value above 

one means that peak flows were overestimated when simulated with the modified source 

of rainfall as compared to the reference simulation.  The aggregation of rainfall in space 

presents two opposite effects that might affect the peak flow simulation.  First, it 

smoothes the high intensity rainfall clusters, decreasing the peak flow in some of the 

sites.  Second, the aggregation causes transferability of some water from one hillslope to 

the other, and in this case it can add more water to specific areas, which increases peak 

flow.  Both effects are represented in Figure VI-1, where we can see that for some sites 

the spatial aggregated rainfall fields caused underestimation and for others overestimation 

of peak flow.  The second effect becomes very clear for the spatial resolution of 

ΔS=0.25’.  Hillslopes that were out of the storm path and did not present high peak flows 

for the reference simulation started to receive part of the storm.  In this case, due to the 

initially low value of peak flow, the relative difference in peak flow reached values close 

to 500%.   
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As we saw with the retrieval error, the effects of precipitation resolution on flood 

prediction decreases with increasing catchment size.  This is expected when the 

transformation of the data does not introduce any bias into the total volume of water 

reaching the basin.  Ten percent of relative error is achieved for an area equal to 

approximately 50km2 for spatial aggregations on the order of ΔS=0.1’ and ΔS=0.15’.  

However, for an aggregation on the order of ΔS=0.25’, the same uncertainty level is 

reached for a basin with an area close to 1000 km2.  This result is in accordance with Fu 

et al. (2011), who investigated the impact of the spatial resolution on stream flow 

prediction.  The authors compared simulations that were obtained with rainfall fields with 

500x500m spatial resolution to those obtained with a 10 x 10km rainfall grid and 

concluded that the effect of spatial resolution was negligible for catchment sizes above 

1000 km2. 

In Figure VI-1, to evaluate the effects of temporal resolution, we can compare the 

plots in line 1 (1-hour) to the plots in line 2 (3-hours).  We can see that the cloud of 

points moved slightly down, which indicates that for some of the basins, temporal 

aggregation decreased the simulated peak flow.  However, this effect is not very 

significant for catchments larger than 100km2, as indicated by the similarity between the 

plots in lines 1 and 2.  The 3-hour integrated rainfall fields are not the correct 

representation of actual satellite rainfall data.  Even though stationary satellites 

continuously monitor the same location on the Earth, IR does not present a strong 

relationship with precipitation, and rainfall estimated based solely on this information is 

very uncertain (Kidd, 2011).  PMW provides a much better estimation of precipitation, 

but in this case the sampling frequency is very low.  In the next section, I will investigate 

the effect of low temporal sampling on flood prediction.   
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Impact of low temporal sampling 

Rainfall estimation based on PMW data suffers from gaps in temporal sampling.  

With the current constellation of PMW sensors (4 total with a sampling frequency of 

about once per day), the average sampling frequency is approximately 6 hours.  Infrared 

(IR) measurements are used to fill the gaps between observations.  However, IR is 

sensitive only to the uppermost layer of clouds and presents a low relationship with 

rainfall.  The Global Precipitation Mission is set to be launched in 2012 and will assure 

PMW 3-hour sampling at any given Earth coordinate 90% of the time.  

In this work, I use a simulation approach to quantify the effect of sampling 

frequency on flood prediction.  I use 5-minute Hydro-NEXRAD rainfall data to generate 

ensembles that mimic the sampling frequency of the future GPM mission.  The 

ensembles were generated by randomly selecting one hour (out of the three available 

hours) to represent 3 hour rainfall intervals.  Fifty ensembles were generated and used as 

input into the hydrological model.  This method provides an approximation of the 

expected error since instantaneous rainfall fields should have been used instead of 1-hour 

accumulated.  However, information about the instantaneous fields is not available.  In 

this sense, I expect that real errors due to sampling frequency are even larger than the 

ones presented in this work.  Nevertheless, the results of this study help us understand the 

magnitude of the sampling error compared to other sources of errors previously 

discussed.  

Figure VI-2 (a) presents the areal average rainfall accumulation over the basin for 

the reference rainfall field (red line) and the lower and upper limit of the 50 sampling 

frequency ensembles.  We can directly compare this figure to Figure 6-1, which presents 

the same plot for different scenarios of retrieval error.  Even though the present scenario 

represents the lower limit of errors due to sampling interval, Figure VI-2 (a) demonstrates 

the strong impact of this type of error.  Total accumulated precipitation in the basin 
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varied from around 220mm to almost 400mm.  This large range of rainfall uncertainty 

had a substantial impact on flood prediction.   

Figure VI-2 (b) use the same metrics applied to generate Figure V-9.  The 

distance between the blue dots and the zero line represents the width of the error band at 

the time of the peak.  Values equal to 1 indicate that the magnitude of the difference 

between the lower and the highest value of predict peak flow is equal to the median of the 

values.  In this case, even for the outlet of the basin, the error band is very large (equal to 

0.9 times the medium of peak flow).  In Figure VI-3 I included the Cedar River 

hydrographs with the error band due to sampling frequency error.  The error due to 

sampling frequency does not decrease with basin area, as was the case with retrieval error 

and errors due to coarse resolution data.  

Even though the error due to sampling is very large, different methodologies are 

available that combine the information of infrared and microwave observations to 

compensate for the poor sampling of PMW (Ebert et al., 2007).  These products generally 

merge geostationary infrared data and polar-orbiting passive microwave data to take 

advantage of the frequent sampling of the infrared and the better rainfall estimation of the 

microwave.  One example is the Climate Prediction Center morphing (CMORPH) 

technique that combines PMW observations with the cloud motion derived from the IR 

data (Kidd and Huffman, 2011).  At times and locations at which PMW data are 

unavailable, PMW estimates are propagated/interpolated using motion vectors derived 

from the IR data (Joyce et al., 2004).  Consequently, this method does not rely directly on 

rainfall estimated by IR but, instead, takes advantage of the information IR provides with 

high accuracy.  

Conclusions 

In this study, I use a calibration-free hydrological model to investigate the impact 

of rainfall resolution and sampling frequency on flood prediction.  At present, a new 
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Global Precipitation Mission is being planned.  This mission is going to significantly 

improve the potential to predict rainfall from space since it increases PMW sampling 

frequency and adds information to the current systems, including information from 

sensors that were not available until this point (active microwave measurements).  At this 

moment, it is hard to predict how much improvement will be achieved with the addition 

of this new information and methods.  Therefore, this study did not focus on currently 

available products, but I independently evaluated different sources of uncertainty with the 

goal of identifying which components potentially compromise the satellite remote 

sensing rainfall data for flood prediction. 

Spatial and temporal resolution of rainfall fields has a significant impact on 

simulated peak flow.  This impact is scale dependent, and it decreases as basin area 

increases.  When information is aggregated in space, two main factors contribute to 

uncertainties in peak flow prediction.  First, rainfall fields are smoothed out, which cause 

the underestimation of peak flow for some hillslopes and catchments.  Second, when 

aggregated to coarser spatial resolution, storm water is transferred from one 

hillslope/basin to the other, which causes peak flow overestimation for some areas and 

underestimation for others.  This effect is visible when the simulation is performed with 

rainfall data that present the same spatial resolution of currently available satellite rainfall 

products.  Nevertheless, this uncertainty is also filtered out by the river network and 

decreases as basin area increases.   

At some scales, the impact of rainfall spatial resolution disappears.  For the event 

and basin analyzed, this happened at a scale of 50 km2 for a spatial resolution equal to 

ΔS=0.10’ (twice the radar resolution) and 1000 km2 for spatial resolution equal to 

ΔS=0.25’ (five times the radar resolution).  The effect of temporal resolution can only be 

seen for basin areas below 100 km2.  I conclude that peak flow uncertainties will be low 

if the average precipitation over the catchment is accurately estimated.  Errors introduced 
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at small scales will disappear at some scales, depending on the storm properties and data 

resolution.   

Our results demonstrate that sampling frequency errors are critical for flood 

prediction since the errors are not filtered out by the river network.  I simulated the 

expected error by considering the expected sampling frequency of the Global 

Precipitation Mission (once every 3 hours at 90% of the time).  I used a simulation 

approach that simulates the best-case scenario, since 1-hour accumulations are used 

instead of instantaneous fields.  Even for this scenario, uncertainties due to sampling are 

very large, with an order of magnitude of 90% for the outlet of the basin.  At the hillslope 

scale, errors reached 500%.  For basins on the order of 10km2, errors were on the order of 

100% to 250%, which demonstrates the importance of using retrieval error algorithms 

that merge different sources of satellite information.  

The effects of rainfall sampling and resolution will depend on the spatial and 

temporal variability of the precipitation and the runoff response.  It was not the intent of 

this study to provide a comprehensive answer to the challenging question of how satellite 

rainfall errors impact hydrological modeling predictions for any hydrological condition.  

Instead, I attempted to provide insight into the potential to use these technologies for 

flood simulation, the magnitude of the errors involved, and how they change across 

scales.  Therefore, I chose an event of large magnitude that was likely to be captured by 

remote instruments.  
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Figure VI-1. The relative difference in simulated peak flow due to spatial and temporal 
precipitation resolution.  

 

Figure VI-2. The effect of sampling frequency on flood prediction uncertainty (a) and 
error band of 50 samples generated based on the simulation of temporal 
sampling (b).  Blue dots: the difference between the 95th (      and 5th 
(     percentile ensemble flow values normalized by the median 
(      ensemble flow value; Green dots: the normalized difference between 
the median ensemble value and the reference peak discharge (  

 ). 
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Figure VI-3. Hydrographs with error bands for Cedar Rapids sites using 50 different 
ensembles that mimic uncertainty due to sampling frequency.  These results 
simulate the case for which one sample is obtained each three hours. Observed 
values are presented in dark blue and simulated based on SAC-SMS in light 
blue  
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CHAPTER VII  

EVALUATION OF DIFFERENT PRECIPITATION DATASETS AND THEIR 

IMPACT ON FLOOD PREDICTION 

Introduction 

In Chapters 5 and 6, I investigated how different sources of rainfall uncertainty 

(e.g., coarse resolution and retrieval error) affect peak flow simulation.  In Chapter 5, I 

focused on uncertainties caused by instrument limitations or observational system 

capabilities, by weak relationships between the measured variable and rainfall (e.g. 

reflectivity), or by lack of knowledge about physical processes.  These uncertainties 

result in random and deterministic errors that are usually a function of rain rate.  I 

evaluated the effect of different error structure scenarios on simulated peak flow and 

hydrographs across multiple scales for the 2008 Iowa flood event.  In Chapter 6, I 

independently evaluated how errors caused by coarse spatial and temporal resolution and 

low temporal sampling affect simulations.  The final rainfall products obtained by radar 

or satellite-based techniques contain a combination of these different sources of errors.  

In this chapter, I perform simulations using the real products to evaluate how different 

they are from each other and to assess how these differences propagate though the 

hydrological model.    

I evaluate different datasets in terms of how well they perform in terms of 

simulating peak flow across a large range of scales.  As a reference, I use a peak flow 

simulation obtained using a Stage IV rainfall dataset, although higher resolution datasets 

are available.  I chose this dataset as a reference because it is the highest resolution 

dataset available for years other than 2008.  The analyses in this chapter were performed 

for the Cedar River basin.   

In the next section, I describe the datasets included in this study. I then present the 

methodology and model results for the 2008 flood event, for which higher resolution 
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rainfall data based on the Hydro-NEXRAD system is available, and for the years 2002, 

2003, and 2004.  I close this chapter with conclusions.  

Datasets 

In this section, I describe the rainfall datasets analyzed in this study, which are 

also listed in Table VII-1.  I begin by describing weather radar based products, including 

the Stage IV product provided by The National Weather Service Next Generation 

Weather Radar (NEXRAD) and the higher resolution/accuracy datasets generated based 

on the Hydro-NEXRAD system.  I demonstrate some undesirable features in the Stage IV 

data that are caused by the calibration offset between different radars covering the same 

region.  Seo et al (in preparation) provided a methodology to correct this miscalibration 

and generated higher resolution rainfall products using an offline version of the Hydro-

NEXRAD system.  I then describe the rainfall datasets based on satellite remote sensing 

measurements, including simulations performed using TRMM-3B42, PRSIANN, and 

CMORPH.  For details on the algorithms, refer toSapiano and Arkin (2009).The final 

section describes the dataset used to force the SAC-SMS model.  The Mean Areal 

Precipitation (MAP) dataset is produced based on rain gauge data using Thiessen polygon 

weighting as the interpolation method.   

Weather radar datasets 

Stage IV 

The US is covered by a dense network of weather radars operated by the NOAA 

National Weather Service (NWS).  The Stage IV rainfall dataset is one of the products of 

this network and is freely available on the web in an operational base.  Stage IV presents 

hourly rainfall accumulations given on an approximately 4 km by 4 km grid.  Stage IV is 

a post-processed product based on the merging of radar and rain gauge data.  This is done 

to remove the mean-field bias in the radar-only estimates.  Fulton et al. (1998) present 
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more details about the procedure applied to generate this dataset.  Hereafter, I refer to this 

dataset and the results obtained using it as the input to the hydrological model in 

reference to rainfall and simulated peak flow.  

Figure I-1 shows the four radars from the NEXRAD system that partially covers 

the study area.  The Stage IV dataset is produced by mosaicking these multiple datasets 

into a unique product (e.g., Lin and Mitchell, 2005; Zhang et al., 2011; Krajewski et al., 

2011a).  However, different radars are likely to contain different sources of errors, and 

merging all information in a unique product is not a straightforward task.  Figure VII-1, 

for example, illustrates rainfall totals of the Stage IV data over the period of May 30 to 

June 15, when extreme flooding took place in the Iowa River and Cedar River basins.  I 

speculate that radar data from four WSR-88Ds, the Des Moines (KDMX in Iowa), 

Davenport (KDVN in Iowa), Minneapolis (KMPX in Minnesota), and La Crosse (KARX 

in Wisconsin) radars, were combined for this product (three radar locations are clearly 

visible in Figure VII-1).  Exact information on how many radars were used for the 

product generation in Figure VII-1 is unknown.  However, I recognize a vertically 

stretched border at the middle of the horizontal domain that is positioned at the 

equidistance zone between the KDMX and KDVN radars.  The line reveals that 

individual rainfall estimates (before they were combined) from the two radars are not on 

the same level due to different calibration offsets (see Marks et al., 2009; Wang and 

Wolff, 2009; Seo et al., 2012).  This fact verifies that the merging procedure for the Stage 

IV product does not effectively deal with this relative bias problem.  A similar systematic 

feature could also be perceptible in other merged products (e.g., Zhang et al., 2011; 

Krajewski et al., 2011a) when the relative bias among radars is not quantified and 

adjusted properly.   

The systematic rainfall differences along the border line may be translated into 

over- or under-estimation of total water volume or discharge rate for some basins located 

in or downstream from the affected area.  To investigate the effects of these uncertainties 
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on rainfall products, and consequently on hydrologic simulations, we corrected these 

fields based on the results presented in Seo et al. (2012).  We adjusted one (the KDMX) 

of the radars to the same level as the other radar (KDVN), assuming that the KDVN and 

other radars are well-calibrated.  Although the reference radar (here, the KDVN) might 

be mis-calibrated, the merged rainfall field could be uniformly corrected using rain gauge 

data.  Seo et al. (in preparation) describe the procedures used to correct the Stage IV 

dataset in more detail. 

Hydro-NEXRAD  

To generate Hydro-NEXRAD estimates, Seo et al. (in preparation) collected radar 

Level II data from the National Climatic Data Center (NCDC) for four WSR-88D radars 

(The KARX, KDMX, KDVN, and KMPX; see Figure 1-1).  As shown in Figure 1-1, four 

radars illuminate the Iowa River and Cedar River basins, but none of them fully covers 

the entire area.  Since there was a resolution upgrade of radar Level II volume data during 

the period of this study (the timings of this switch are different for each radar), the 

collected data for all four radars exist in two phases of data format: legacy- (before the 

change) and super-resolution (after the change) (see e.g., Seo and Krajewski, 2010).  The 

sampling geometry of radar measurement for legacy-resolution is represented by 1° in 

azimuth by 1-km in radar range.  In the super-resolution radar volume data, the lowest 

three elevation angle data of legacy resolution were replaced with the new resolution of 

0.5° by 250-m. 

We define procedures to yield merged radar-rainfall estimates using the Level II 

volume data collected from the four radars around the Iowa River and Cedar River 

basins.  In this section, the description for the estimation procedures is limited to 

generation of customized Hydro-NEXRAD estimates.  For detailed information on the 

estimation of the NCEP products, refer to Fulton et al. (1998) and Lin and Mitchell 

(2005). 
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To process a massive radar volume data set for four months (March through June 

2008) from four WSR-88Ds (the KARX, KDMX, KDVN, and KMPX radars), Seo et al. 

(in preparation) used the offline Hydro-NEXRAD system that can deliver radar-rainfall 

estimates with user-specified algorithms and resolutions (time and space).  The main 

procedures to create radar-rainfall estimates over the Iowa River and Cedar River basins 

are delineated as two steps: (1) individual (single) radar data processing and (2) multiple 

radar data merging. 

Since the polar-based resolution and data format between the legacy- and super-

resolution Level II data are different, the legacy- and super-resolution data were 

processed separately.  Data processing algorithms for super-resolution is discussed in 

Krajewski et al. (2012), but the basic concepts and algorithm components are the same as 

in Seo et al. (2011).  Non-precipitation radar echoes caused by ground clutter and 

anomalous propagation (AP) effects (e.g., Moszkowicz et al., 1994; Grecu and 

Krajewski, 2000; Berenguer et al., 2006; Cho et al., 2006) were removed by the 

implementation of Steiner and Smith (2002) that classifies non-precipitation echoes using 

the horizontal and vertical structure of measured radar reflectivity.  Seo et al (in 

preparation) applied two threshold values (10 and 53 dBZ) to identify effective minimum 

rainfall and hail contamination and constructed reflectivity maps using a non-parametric 

kernel function (see Seo et al., 2011).  The NEXRAD default Z-R relationship, Z = 

300R1.4, (Fulton et al., 1998) was then applied to transform radar reflectivity fields into 

rainfall intensities. 

To merge multiple radar data, we translated all single radar fields (either radar 

reflectivity or rainfall accumulation) based on a spherical coordinate system denoted by 

azimuth, radar range, and elevation angle plane onto the common grid of 1' × 1' 

geographic coordinates.  The merging of different polar-based resolution data (for periods 

when both legacy- and super-resolution data coexist) arising from the different timings of 

the resolution switches for four radars can be resolved by the common grid translation.  
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Seo et al (in preparation) then used two types of merging options, namely “data-based” 

and “product-based” merging (refer to Seo et al., 2011), that combine radar reflectivity 

and rainfall accumulation fields, respectively.  Using a distance weighting function (e.g., 

Zhang et al., 2005; Langston et al., 2007) may reduce significant range effects (see e.g., 

Andrieu and Creutin, 1995; Vignal and Krajewski 2001; Krajewski et al., 2011b) at the 

very far range from the radar.  In this study, I show only the results for the second type of 

merging procedure:  product-based merging. 

The Hydro-NEXRAD products also present the sharp border at the equidistance 

zone between radars.  The primary reason that the border line appears in merged radar-

rainfall products is because the merging procedure assumes that all involved radars are 

well-calibrated and does not consider different calibration offsets among radars (see e.g., 

Anagnostou et al., 2001; Marks et al., 2009; Wang and Wolff, 2009).  Direct information 

on this relative calibration bias is not yet available through operational agencies.  In an 

attempt to quantify the relative differences in reflectivity (relative calibration bias) 

between two ground-based radars, Seo et al. (2012) proposed a methodology to compare 

radar reflectivity measurements observed for the same meteorological targets.  Their 

study also reported the magnitude of the bias information between the KDMX and 

KDVN radars from 2003 to 2010.  Fortunately, the most significant relative bias in 

Figure VII-1  seems to occur between the KDMX and KDVN radars, and the KDVN and 

KARX radars do not show systematic differences in rainfall amounts.  This implies that 

the KDMX radar is the key to correcting the sharp border.  Therefore, the author used the 

relative bias information quantified in Seo et al. (2012) and adjusted the KDMX radar 

reflectivity data to account for the problem mentioned in section 2.  We applied monthly 

mean values of the relative bias (i.e., 1-2 dBZ) and obtained enhanced radar-rainfall 

estimates for both merging options. 
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Satellite-based datasets 

In this section, I describe the satellite-based datasets investigated in this study.  

For a fair comparison, I included products with the same spatial (~25km) and temporal 

(3h) resolution.   

PERSIANN 

Precipitation Estimation from Remotely Sensed Information using Artificial 

Neural Networks (PERSIANN) product is generated based on artificial neural networks 

methods that routinely adjust the model parameters of the precipitation estimation from 

remotely sensed information using coincident rainfall derived from the microwave 

imager (TMI).  The algorithm classifies the clouds and extracts local and regional 

information from infrared and geostationary satellites.  The cloud images are then 

transformed into rain rate based on the main cloud characteristics that can be related to 

rainfall.  Hong et al. (2004) present more details about the method used to generate 

PERSIANN. 

CMORPH 

One of the main sources of uncertainty in remotely sensed rainfall products arises 

from the difficulties in estimating rainfall based on a cloud–precipitation relationship 

using geostationary information (Arkin and Xie, 1994).  CMORPH attempts to overcome 

this problem by combining passive microwave measurements with images of 

geostationary satellites using an alternative method.  The method consists of using 

precipitation estimates derived from low-orbiter-satellite (PMW) observations, which 

have a more direct relationship with rainfall, and geostationary satellite IR to track the 

clouds and transport it via spatial propagation during the periods when instantaneous 

PMW data are not available.  Precipitation features such as shape and intensity are 

estimated for 30 minute intervals by “performing a time- weighted interpolation between 

PMW-derived estimates that have been propagated forward in time from the last 
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available PMW observation and those that have been propagated backward in time from 

the next available PMW scan,”  This procedure is referred to as ‘‘morphing’’ (Joyce et 

al., 2004). 

TMPA-3B42 

TMPA is a calibration-based sequential scheme that combines precipitation 

estimates from multiple satellites, as well as gauge data where available, at fine scales 

(Huffman et al., 2007).  TMPA-3B42 is based on the calibration of TRMM Combined 

Instrument (TCI) and TRMM Microwave Imager (TMI) precipitation products.  In this 

study, I evaluate the research product version 6 (3B42 V.6). 

The research product (3B42 V.6) uses the TRMM Combined Instrument (TCI) 

estimate for calibration, which is considered to be better than the TMI but is not available 

in real time (Huffman et al., 2007).  The research product is also corrected for bias by 

comparing the monthly sums of the 3-hourly fields to a monthly gauge analysis (Su and 

Hong, 2008). 

Other datasets 

National weather service – mean areal precipitation 

The National Weather Service calibrates rainfall runoff models using 6-hour mean 

areal precipitation (MAP) inputs derived from rain gauge networks.  Each river forecast 

center (RFC) within the NWS produces MAP for the basins for which streamflow 

forecasts are performed.  The gauge-derived MAPs are computed using Thiessen polygon 

weighting.  These datasets were used to calibrate the parameters for the SAC-SMS 

model’s results presented in this thesis.   

The SAC-SMS model performs well using this rainfall dataset since it was 

specially calibrated using this data.  However, as demonstrated by Finnerty et al. (1997), 

runoff timing and volume are biased when hydrological simulations are performed based 
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on datasets that have space-time scales that differ from the ones for which the model 

parameters were calibrated.  The authors demonstrated that hydrologic model parameters 

are essentially tied to the space-time scales at which they were calibrated.  The authors 

also showed that surface runoff, interflow, supplemental baseflow runoff components, 

water balance components of evapotranspiration, and total channel inflow are sensitive to 

the space-time scales of the rainfall.  As I did not have the tools to run the SAC-SMS 

model using different datasets, I ran CUENCAS using the MAP dataset used to generate 

the SAC-SMS predictions presented in this work.   

Johnson et al. (1999) compared mean areal precipitation values (MAPX) derived 

from next generation weather radar (NEXRAD) Stage III data with those generated by 

the NWS based on gauge values (MAP).  The authors concluded that mean areal 

estimates derived from NEXRAD are generally 5–10% below gauge-derived estimates.  

However, this pattern is not consistent in all regions as MAPX is greater than MAP for 

the smallest basins.  The authors also demonstrated a tendency for NEXRAD to measure 

fewer yet more intense intervals of precipitation during extreme storm events.  They also 

performed simulations using the two different datasets and demonstrated that hydrologic 

simulations based on MAPX and MAP differ considerably.  These results show that the 

parameters of the hydrological models will need to be recalibrated if the NWS intends to 

use radar data for hydrological simulations. 

NLDAS-2 forcing 

This precipitation dataset is used as forcing for the land surface data assimilation 

system (NLDAS-2) and constitutes a product of a temporal disaggregation of a gauge-

only CPC analysis of daily precipitation, which was performed directly on the NLDAS 

grid and included an orographic adjustment based on the widely-applied PRISM 

climatology (Xia et al., 2012).  
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Comparison of rainfall totals for different products  

For the 2008 flood event 

The three Hydro-NEXRAD estimates in Table 1 are basically categorized into 

products with (HN-1) and without (HN-2 and HN-3) relative bias adjustment.  We 

corrected the overall bias of the HN-1 and HN-2 product by multiplying each rainfall 

map by 0.7.  This coefficient was estimated by the ratio between accumulated HN-1 and 

Stage IV data over the period of the 2008 flood (May 28th to June 1st).  Regarding the 

HN-3, we used the radar-gauge comparison results to perform daily bias correction.   

Figure VII-2 shows examples of rain totals from May 28th to July 1st of 2008 for 

all products listed in Table VII-1.  As we have discussed, Stage IV and HN-1 products 

present an artificial feature due to the mis-calibration of multiple radars.  This feature 

disappears from the HN-2 and HN-3 products.  Accordingly, the increased rainfall 

quantity in the left area of the line (for the HN-2 and HN-3) leads to more water volume 

at this location, which also affects the sub-basins located downstream from this region.  

While overall bias was applied for the HN-1 and HN-2, bias values estimated from a 

shorter time span were applied for the Stage IV (1-hour) and HN-3 (1-day) values.  The 

HN-3 values in the wet season (May and June) also indicate that more water exists in 

both basins when compared to the Stage IV values.   

We then compared the radar-based products with the gauged-based and satellite 

based rainfall products included in this study.  The NLDAS-2 products were generated 

using gauge-only data.  While Stage IV data has a spatial resolution of 4 km, the 

NLDAS-2 has an approximately spatial resolution of 13 km.  The spatial distribution of 

the NLDAS-2 rainfall field seems to be similar to Stage IV, but very large values are 

smoothed out by the resolution of the dataset.  For the MAP-NWS, rainfall is estimated 

for each sub-basin for which streamflow predictions are generated by the NWS.  In this 

case, we can see the pattern of higher precipitation in the upstream region of the basin 



www.manaraa.com

183 
 

 

and lower total precipitation in the southeastern area.  However, some watersheds seem 

to not follow the correct pattern.  For example, right in the middle of the Cedar River 

basin there is a sub-watershed with a low total rainfall value that is surrounded by sub-

basins with larger total values.  

In terms of the remotely-sensed datasets, both products overestimated rainfall for 

the southern part of the area and underestimated rainfall in the northwestern part of the 

area.  The spatial pattern of remotely-sensed rainfall is completely different from the 

pattern observed in the radar- or gauged-based products.       

For years 2002, 2003, and 2004  

Figure VII-3 shows rainfall totals from March 1st to October 1st of 2002 (column 

1), 2003 (column 2), and 2004 (column 3).  For 2003 and 2004, the gauge-based products 

(NLDAS-2 and MAP-NWS) present spatial patterns and values that are similar to the 

radar-based products (Stage IV).  This is expected since the Stage IV data is corrected by 

bias based on the gauge data.  This is not true for 2002, for which NLDAS-2 seems to 

present slightly higher rainfall total values that are more homogeneous in space than the 

other two products.  In all the cases, precipitation is overestimated by the satellite 

products.   

Comparison of simulated peak flow  

based on different products 

For the 2008 flood event 

 
Figure VII-4 presents observed (gray lines) and simulated hydrographs (light blue 

line for SAC, continuous dark blue line for C-Stage IV, and dashed dark blue line for C-

HN-3) for selected sites in the study area.  I first discuss the results for sites 2, 3, and 5.  

These sites are located in the region affected by the inaccurate matching of different 



www.manaraa.com

184 
 

 

individual radar-rainfall maps.  Site 5 is entirely included in the affected area and, 

especially for this site, results obtained with HN-3 products are significantly better than 

the ones obtained using Stage IV.  Sites 2 and 3 are partially located in the affected area, 

and HN-3 results are also slightly better for these sites.  Site 7 is located in the northern 

part of the Cedar River Basin and is one of the sites for which Stage IV presented better 

results than HN-3.  Both Stage IV and HN-3 overestimated discharge for this site, while 

SAC-SMS underestimated discharge for this site.  The reason for these discrepancies is 

clear when we look at the accumulated values in Figure VII-2.  For product HN-3, there 

is a cluster with very high rainfall located at the northern part of the basin.  Further 

studies are required to explain the origin of these inconsistencies; however, they might be 

a consequence of uncertainties in observed streamflow or result from the merging of the 

KMPX and KARX radars that was not adjusted in this study.  The last hydrograph 

presents an example of streamflow time series with missing data.  In this case, no data is 

available for the likely period when peak flow happened.  

In Figure VII-5, I present the relative difference between simulated peak flow 

based on Stage IV data and simulated peak flow based on the rainfall datasets evaluated 

in this study for the 2008 event.  Positive values mean that the simulated peak flow was 

underestimated compared to results obtained using the Stage IV data.  In each plot, I 

present the rainfall product used as forcing for the simulation on the right and the relative 

peak flow difference for the outlet on the left.  Even though higher resolution datasets are 

available, I opted to use Stage IV as a reference, since it is the dataset available for all the 

events analyzed in this chapter.  Moreover, this study attempts to demonstrate the 

magnitude of the difference in simulated peak flow that one can obtain when forcing the 
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hydrological model by different rainfall products.  This evaluation cannot be performed 

when parameters are calibrated since parameter values compensate for errors in the input.    

I present results for all different radar-based products.  These products are all 

based on the same raw data (radar reflectivity) but use different methodologies to process 

this data and transform it into final rainfall products.  Even in this case, large relative 

differences (on the order of 20%) are observed for the peak flow at the outlet of the basin.  

For smaller scales, differences are even larger.  For example, for scales around 1 km2, 

differences vary from +40 (underestimated compared to Stage IV) to -100% 

(overestimated compared to Stage IV).  For the NLDAS-2 products, differences for small 

scales are significant, but as the basin scale increases differences decrease.  The value for 

the outlet of the basin is practically the same as the one obtained using Stage IV data, 

which indicates that the volume of rainfall estimated by both products might be very 

similar.  However, both products present differences in terms of where and when the 

rainfall occurred.   

The CMORPH product presents a small difference in terms of peak flow for the 

outlet of the basin (20%).  When we look at the total rainfall maps, we see that over the 

study area, the product compares relatively well with Stage IV data in terms of 

accumulated rainfall.  However, the same did not occur in the southern part of the area, 

where rainfall was overestimated.  The PERSIANN products basically did not capture the 

rainfall events that occurred over the Cedar River basin, and peak flow was 

underestimated in this case (0.71% for the outlet).  

Results in this section were based on short term simulations (May 28th to July 1st) 

since high-resolution radar rainfall data was only available for that period.  However, in 

Figure VII-6, I present results for long term simulation (March 1st to October 1st) to 

demonstrate some features of the satellite products.  In this figure, we can see that 

CMORPH captured well the main event that occurred during June of 2008 but 
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overestimated an event that occurred in July, for which simulated peak flows were even 

higher than the ones observed during June.     

Peak flow simulation for years 2002, 2003, and 2004  

For the years 2002, 2003, and 2004, I evaluated two gauged-based products 

(NLDAS-2 and MAP-NWS), one radar based product (Stage IV), and two satellite-based 

products (PERSIANN and CMORPH).  Figure VII-7 presents the relative difference 

between peak flow predicted using the reference dataset (Stage IV) and other datasets 

(NLDAS-2, MAP-NWS, PERSIANN, and CMORPH).  As expected, differences in 

simulated peak flow for small scales are very large for all products.  For gauged-based 

products, differences for the outlet of the basin vary from around 10% for NLDAS-2 

product year 2003 to 66% for MAP-NWS product year 2004.  For the satellite-based 

products, differences are enormous for all scales and all years.  This is due to the high 

differences observed in the rainfall accumulated values. 

Figure VII-8 Figure VII-9 show simulated hydrographs based on different rainfall 

products for 2003 and 2004, respectively.  For 2003, I present results from the gauged-

based and satellite-based products.  Comparing the results of gauged-based products and 

the result obtained with Stage IV, I conclude that the first peak was underestimated in all 

cases.  It is difficult to define the cause of this underestimation.  All the products 

successfully capture the base and the second peak that occurred in July.  This figure also 

demonstrates the cause of large differences in peak flow observed for the satellite-based 

products.  The first peak is captured well by the PERISANN dataset.  However, the 

CMORPH dataset did not capture this event at all.  For the second peak, both products 

overestimate rainfall values.  

For 2004, I present one example for a gauged-based product (MAP-NWS) and 

one example for a satellite-based product (PERSIANN).  In the first case, the peak is 

underestimated.  For 2004, the rainfall totals and spatial pattern provided by the gauged 
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and radar based products are very similar.  Therefore, the underestimation in peak flow 

might be the result of coarse resolution of the data and underestimation of peaks during 

the main events.  For this event, satellite products also overestimate rainfall values. 

Conclusions 

Rainfall is the main forcing for floods.  For the US, different sources of rainfall 

datasets are available based on gauge (MAP-NWS, and NLDAS-2), radar (Stage IV and 

Hydro-Nexrad datasets), and satellite (PERSIANN, CMORPH, and TRMM) information.  

In this chapter, I compare these different products in terms of total rainfall amounts and 

how differences in rainfall estimation propagate through the hydrological model and 

affect simulated peak flow.   

I began by analyzing rainfall products for the 2008 flood event.  I demonstrated 

inconsistencies in the Stage IV weather radar rainfall product provided by the National 

Weather Service that arise from the calibration mismatch between different radars 

covering the same area.  This mismatch causes artificial features in the merged dataset.  

Seo et al. (in preparation) used an online version of the Hydro-NEXRAD and a 

methodology proposed by Seo et al (2012) to remove this undesirable feature and 

produce higher quality rainfall datasets.  I first confirmed that using higher quality 

rainfall datasets improves hydrological prediction for the affected areas.  This is not 

always true when a model is calibrated based on a “lower quality” dataset, since 

parameters will compensate through the specific error structure of this dataset.   

I then compare the different datasets in terms of total accumulated rainfall during 

the 2008 event.  While weather radar and gauged-based products present similar values 

and spatial distribution, satellite products present significantly different features.  I forced 

the hydrological model with the different products to investigate the effects on peak flow 

simulation.  This exercise demonstrated that even products based on the same raw data 

(weather radar) can provide significantly different results for simulated peak flow for 
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small scale basins.  However, this difference tends to decrease as basin area increases.  

Simulations based on satellite products presented large differences across scales.  The 

hydrographs showed that CMORPH was able to correctly capture the main rainfall event 

that occurred in 2008 but overestimated an event in July that resulted in even higher 

simulated peak flows.   

I repeated the same experiment for the years of 2002, 2003, and 2004, comparing 

total accumulated rainfall for different rainfall products and using these different products 

to force the hydrological model.  I confirmed high uncertainties in remote sensing 

information.  I used the hydrographs to reveal that satellite-based rainfall product 

uncertainties are not deterministic: rainfall can be detected but overestimated (normally 

the case), detected and underestimated, not detected, or falsely detected.  A better 

understanding of the causes of these uncertainties is required to use this data to predict 

floods.  

The results presented in this chapter point to a big challenge for flood prediction: 

the correct estimation of rainfall intensity and space and time variability using satellite-

based remote sensing information.  Even in cases for which ground instruments (gauge 

and weather radar) are available, as for the study area, large discrepancies are observed 

among the different products, especially when considering large watersheds covered by 

different instruments.  The development of global datasets will require methodologies to 

aggregate all available rainfall information (e.g., weather radar, gauge data, and satellite 

base rainfall) in a consistent and optimized way to reduce uncertainties in rainfall 

estimation.  Moreover, more analyses are required to understand event-by-event 

uncertainties in satellite-based rainfall estimation instead of focusing on the analyses of 

monthly or yearly accumulated total rainfall.  
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Table VII-1. Precipitation satellite products.   

Short 
Name 

Provider ΔS ΔT Type Period Reference 

Radar Products 
Stage IV NWS 0.05° 1h Non-polarimetric 

radar 
1998-2011 (Fulton et 

al., 1998) 
Hydro-
Nexrad 
product 1 

IIHR 0.05° 60 min Non-polarimetric 
radar 

By request (Seo et al., 
2011) 

Hydro-
Nexrad 
product 2 

IIHR 0.05° 60 min Non-polarimetric 
radar 

By request (Seo et al., 
2011) 

Hydro-
Nexrad 
product 3 

IIHR 0.05° 60 min Non-polarimetric 
radar 

By request (Seo et al., 
2011) 

Hydro-
Nexrad 
product 3 

IIHR 0.016
° 

5 min Non-polarimetric 
radar 

By request (Seo et al., 
2011) 

Satellite Products 
TMPA-RT NASA-

GSFC 
0.25° 3h IR-PMW 1998-2011 (Huffman 

et al., 
2007) 

PERSIAN
N 

University 
of 
California, 
Irvine 

0.25° 3h IR-PMW 2000-2011 (Sooroshia
n et al., 
2000) 

CMORPH NOAA/CP
C 

0.07° 30 min IR-PMW 2002-2011 (Joyce et 
al., 2004) 

Other datasets 
NWS – 
MAP** 

NWS Sub-
basin 

6h Combined 
radar and 
GM* 

1998-2011 (Huffman 
et al., 
2007) 

NLDAS2 
forcing 

NASA-
GSFC 

1/8° 1h Combined 
and GM* 

2000-2011 (Sooroshia
n et al., 
2000) 

Source: Ebert, E.E., Janowiak, J.E., Kidd, C., 2007. Comparison of near-real-time 
precipitation estimates from satellite observations and numerical models. Bolletin of 
American Meteorological Society 88, 47–64 

* GM – Ground measurement - ** MAP – Mean areal precipitation. 
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Figure VII-1. Rain total map of the Stage IV for May 30 to June 15 in 2008 over the Iowa 
River and Cedar River Basins. 
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Figure VII-2. Rain total maps for different products (indicated in the figure) for the 
period of May 28th to July 1st 2008.   

Note: HN- Hydro-Nexrad, NLDAS-2 – North Land Data Assimilation System 2, MAP –

NWS – mean areal precipitation from the National Weather Service, CMORPH - 

Climate Prediction Center morphing technique, and PERSIANN - Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Network 
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Figure VII-3. Rain total maps for different products (indicated in the figure) for the 
period of March 1st to October 1st for years 2002, 2003, and 2004. 
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Figure VII-4. Selected hydrographs showing observed and simulated hydrographs: gray 
lines represent observed, light blue light simulated using SAC, dark blue 
continuous line simulated by CUENCAS forced by Stage IV, and dark blue 
dashed line simulated by CUENCAS forced by HN-3 – 60 min.  
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Figure VII-5. Relative difference in simulated peak flow based on Stage IV (reference) 
and other rainfall datasets for the 2008 events.  The rainfall dataset is 
indicated in each plot. 

Note: HN- Hydro-Nexrad, NLDAS-2 – North Land Data Assimilation System 2, MAP –

NWS – mean areal precipitation from the National Weather Service, CMORPH - 

Climate Prediction Center morphing technique, and PERSIANN - Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Network 
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Figure VII-6. 2008 hydrographs simulated based on (1) NLDAS-2, (2) NWS-MAP, (3) 
CMORPH, and (4) PERSIANN. 
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Figure VII-7. Relative difference in simulated peak flow based on Stage IV (reference) 
rainfall and other rainfall datasets for 2002 (column 1), 2003 (column 2), and 
2004 (column 3).  The rainfall dataset is indicated in each plot. 
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Figure VII-8. 2003 hydrographs simulated based on (1) NLDAS-2, (2) NWS-MAP, (3) 
CMORPH, and (4) PERSIANN. 
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Figure VII-9. 2004 hydrographs predicted based on (1) NWS-MAP and (2) PERSIANN. 
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CHAPTER VIII THE IMPACT OF EVAPOTRANSPIRATION AND SOIL 

MOISTURE INITIAL CONDITION ON FLOOD PEAK SCALING 

Introduction 

Potential evapotranspiration (PE) is one of the forcings of the model.  Even 

though contributions from evapotranspiration are not expected to be significant during 

the period of a single rainfall event (hours, days, or even weeks), in the long term 

(months and seasons), evapotranspiration dynamics strongly affect the soil moisture 

initial conditiond and can be the determining factor shaping the magnitude of a flood.  As 

demonstrated in Figure 1-1, evapotranspiration accounts for an average of around 60% of 

the water balance, while runoff accounts for an average of around 40%.  

Evapotranspiration strongly affects soil moisture content, especially between rainfall 

events in the summer and spring seasons, and consequently plays an important role in 

floods that occur during these seasons.  

In this study, I performed continuous streamflow simulation from March to 

September.  I did not perform simulations for the winter season since the model does not 

have a component that accounts for infiltration and percolation in frozen soils.  I first 

needed to estimate the surface, channel, and soil moisture initial conditions for the 

beginning of the simulation, and I assumed that the channel and surface were empty at 

the beginning of the simulation since these reservoirs have a relatively low concentration 

time.  This assumption affected results for the initial period of the simulation.  However, 

soil presents a higher time of concentration, and an incorrect assignment of initial 

conditions in March might affect simulations of floods during the spring and summer 

seasons.   

In this chapter, I present the preliminary results from a sensitivity analysis to 

assess the impact that bias in the estimation of PE or soil moisture initial conditions has 

on simulated peak flow across scales.  I investigate the impact of these variables on 
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simulated peak flow for the following years: 2002 (dry condition), 2003(medium 

condition), 2004 (intense flood), and 2008 (extreme flood).  In Chapter 3, I presented 

simulation results for these years.  This chapter complements the analysis presented in 

Chapter 4, which evaluated the impacts of DEM uncertainties, and Chapters 5, 6 and 7, 

which evaluated the impact of precipitation uncertainties. 

This chapter is organized as follows: I first describe the datasets used to estimate 

PE and soil moisture initial conditions.   I then describe the methodology adopted for the 

sensitivity analysis and the main results.  I close the chapter with conclusions.   

Datasets 

Potential evapotranspiration 

PE is an input into the hydrological model which is used to estimate the actual 

evaporation from the surface and from the unsaturated and saturated layers of the soil.  

Dingman (2002) defines PE as “the rate at which evapotranspiration would occur from a 

large area completely and uniformly covered with growing vegetation which has access 

to an unlimited supply of soil water and without advection or heat-storage effect”.  Using 

PE to calculate actual evaporation corresponds to assuming that the only limitation for 

evaporation is water availability.  In the model formulation, no limitations are imposed 

on the evaporation of water from the surface storage.  Limitations are imposed to 

evaporation from the unsaturated and saturated layers of the soil.  In the current version 

of the model, the percentage of available water that evaporates from the soil is a function 

of the soil’s volumetric moisture and the water table.   

I adopted two different data sources: (1) PE estimated based on remote sensing 

(MODIS 16, see a review in Mu et al., 2011) and (2) PE used as forcing by NLDAS-2 

that was computed in the NCEP North American Regional Reanalysis using the modified 

Penman scheme of Mahrt and Ek (1984).  MODIS products are provided with 1 km in 
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space and 8 days resolution in time, while the NLDAS-2 products are provided with 1-

hour resolution in time and 1/8° (~13km) resolution in space.  

Soil moisture initial conditions 

The initial conditions of the soil are estimated based on the NLDAS output that 

provides spatially distributed total soil column wetness (0-200 cm) with hourly and 

0.125° resolution (Fan et al., 2006). 

Methodology 

First, I compared the simulations obtained using the two different datasets for PE 

described in the previous section, using peak flow simulated based on the NLDAS dataset 

as a reference.  Next, I modified the NLDAS dataset, increasing or decreasing PE by a 

constant ratio equal to -20% (decrease in PE), 20%, 40%, and 70% to evaluate the effects 

that bias in PE estimation has on simulated peak flow. 

For the evaluation of the sensitivity of peak flow to initial soil moisture, I used as 

reference the simulation generated based on soil initial conditions estimated using the 

NLDAS-2 output for the soil moisture condition.  NLDAS-2 provides spatially 

distributed total soil column wetness (0-200 cm) with hourly and 0.125° resolution.  I 

compared this result with results obtained by setting the spatially constant initial moisture 

conditions equal to 0.3, 0.5, and 0.7 volumetric soil moisture in the unsaturated layer of 

the soil.  In all of the cases, the water table is set initially to zero.   

In this chapter, I use the same metrics used in chapters 6 and 7 and 8 to evaluate 

the effects of precipitation on simulated peak across scales.  I evaluate the relative 

difference in peak flow simulated based on the different potential evapotranspiration and 

soil moisture scenarios.  
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Results and Analysis 

In Figure VIII-1, I present the results from the sensitivity to potential 

evapotranspiration.  I plot the relative difference between peak flow values that were 

simulated based on NLDAS and MODIS potential evapotranspiration (line 1) and on the 

modified NLDAS potential evapotranspiration datasets produced by decreasing (0.8-line 

2) or increasing (1.2 -line 3, 1.4 -line 4, and 1.7-line 5) potential evapotranspiration by a 

constant rate for the years 2002 (column 1), 2003 (column 2), 2004 (column 3), and 2008 

(column 4).  For all the simulations, I adopted the same DEM (90 meters NED) and 

rainfall products (Stage IV).  The sensitivity to potential evapotranspiration varies from 

year to year.  It is interesting to note that for the years 2002, 2003, and 2004, reduction in 

peak flow due to an increase in potential evapotranspiration for the outlet of the basin 

was almost linearly related to the rate of change in the potential evapotranspiration.  

However, the same is not true for the 2008 flood, for which an increase in potential 

evapotranspiration of 40%, for example, caused a decrease in peak of just 13% for the 

outlet of the basin.  This result confirms that the major flood that occurred in the Cedar 

River in 2008, previously denominated the perfect storm, was caused mainly by the 

spatial distribution and the timing of the storm events as well as their relation to the 

movement of the water in the river network.  

Figure VIII-2 presents results for the soil moisture analyses.  In this case, I fixed 

the soil moisture initial conditions in March 1st to a constant spatial value of 0.3, 0.5, 0.7, 

and 1.0 and compared them with the results for which the initial condition was estimated 

based on the NLDAS-2 dataset.  Results demonstrated that simulated peak flow is 

affected by the initial condition; however, the effect decreases as basin scale increases.  

The sensibility to soil moisture initial conditions changes from year to year, and the 

magnitude of the effect probably depends on when the flood event occurred.  If the flood 

event occurred during the spring or at the beginning of the summer season, as was the 

case in 2003 and 2004, the effect of initial moisture conditions is larger.  When the event 
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happens at end of the summer or in the fall, it is not strongly affected by the initial 

condition set on March 1st since a couple of months, including the wet season, seems to 

be enough for the spin-up process.   

The results demonstrate that evapotranspiration strongly affects peak flow 

simulation, while the effects of initial soil moisture are not so significant.  The small 

sensibility to soil moisture initial conditions might be the effect of model spin up.  

Therefore, if the event occurs at the beginning of the simulation, the effects of errors on 

the definition of the initial soil moisture conditions will be larger than if the event occurs 

at the end of the season. 

Conclusions 

The goal of the analyses presented in this chapter was to understand the impact of 

errors on the estimation of potential evapotranspiration and soil moisture on peak flow 

simulation.  I demonstrated that simulated peak flow is affected by errors in the 

estimation of potential evapotranspiration.  As errors in the estimation of 

evapotranspiration introduce positive or negative bias on runoff generation and, 

consequently, peak flow, errors tend to increase as basin scale increases.  However, for 

the 2008 event, potential evapotranspiration had a smaller effect since peak flows were 

determined by rainfall space time variability and transport through the river network.  In 

these cases, when a large volume of water reaches the basin in an optimized manner to 

generate floods, evapotranspiration is not efficient in removing enough water from the 

landscape to significantly reduce peaks.   

The small sensibility to soil moisture initial conditions might be the effect of 

model spin-up.  If the main flood event during a specific year occurs at the beginning of 

the simulation period (March 1st), the effects of errors on the definition of the initial soil 

moisture conditions will be larger than if the event occurs at the end of the season. 
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Even though I have used very simple methods to simulate evapotranspiration and 

to estimate soil moisture initial conditions, these processes do not have a strong effect on 

peak flow simulation as compared to the effects of rainfall uncertainties.  However, I 

believe that model results could be significantly improved, especially for dry periods, if 

the dynamics of the soil and evapotranspiration processes were better represented.   
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Figure VIII-1. Relative difference between peak flow simulated based on NLDAS and 
MODIS potential evapotranspiration (line 1) and for the modified NLDAS 
potential evapotranspiration datasets by a constant rate of 0.8 (line 2), 1.2 (line 
3), 1.4 (line 4), and 1.7 (line 5) for the years 2002 (column 1), 2003 (column 
2), 2004  (column 3), and 2008 (column 4), respectively.   
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Figure VIII-2. Relative difference between peak flow simulated based on spatially 
variable soil volumetric moisture; initial condition provided by NLDAS 
output and constant soil volumetric moisture initial condition equal to 0.3 (line 
1), 0.5 (line 2), and 0.7 (line 3). 
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CHAPTER IX  

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDIES 

This thesis investigates the benefits and limitations of using satellite-based data 

for flood prediction.  An un-biased evaluation of different datasets requires a 

hydrological model whose parameters are not calibrated with historical hydro-

meteorological data since parameter calibration that is based on the optimal match 

between observed and simulated streamflow masks uncertainties in the data and model 

structure.  Therefore, the first part of this thesis consists of the development and 

validation of a multi-scale, explicitly distributed hydrological model whose parameters 

are directly linked to physical properties of the watershed, thereby eliminating the need 

for calibration.  The major conclusions of the first part of this study (Chapters 2 and 3) 

are summarized as follows: 

 I demonstrated that, if an iterative approach for model building is adopted, it is 

possible to construct skillful models for flood prediction that do not rely on 

intensive parameter calibration.  Rather than appealing for model calibration, this 

approach consists of systematically adding complexity to the model and 

evaluating the model’s results to identify possible causes of mismatches with 

observed data. 

 I revealed that when developing a calibration-free hydrological model, the 

complexity adopted in the conceptualization of physical processes is limited by 

data availability.   

 I demonstrated the model’s predictability skills by simulating the 2008 flood 

event for the Cedar River, Iowa River and Turkey River basins using the high-

quality datasets that are available for the study area.  I also performed simulations 

for drier years and, in this case, the model did not perform as well due to the high-

nonlinearity of soil and evapotranspiration dynamics.   
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 I presented a study based on synthetic rainfall to illustrate the importance of using 

a multi-scale framework when validating the results of hydrological models.   

 I demonstrated the model’s predictability skills by simulating the 2008 flood 

event for the Cedar River, Iowa River and Turkey River basins using the high-

quality datasets that are available for the study area.  I also performed simulations 

for drier years and, in this case, the model did not perform as well due to the high-

nonlinearity of soil and evapotranspiration dynamics.   

The second part of this thesis uses the developed model to evaluate different 

datasets for flood prediction.  The major conclusions of the second part of this study 

(Chapters 4 and 8) are summarized as follows: 

 In Chapter 4, I evaluated how uncertainties in the extraction of the river network 

from DEM introduce errors into the characterization of hydrologically-relevant 

landscape properties and how these uncertainties propagate through hydrological 

models.  I analyzed DEMs from different sources (LIDAR, NED, ASTER, and 

SRTM) and with different resolutions (from 30 to 90, 120, 150, and 180 meters).  

In addition, I created supplementary river networks by systematically pruning the 

small Horton-order streams.  Results demonstrated that differences in simulated 

flows are more significant when I pruned the network than when I used coarse 

resolution DEMs or satellite-based DEM.  This study highlights the importance of 

correctly representing the river network and its properties in hydrological models 

that focus on floods.    

 In Chapter 5, I propagated radar-derived rainfall uncertainties through the 

hydrological model and demonstrated that peak flow uncertainty that arises from 

random errors, correlated or not in space, are scale dependent and decrease as the 

basin scale increases.  When rainfall random errors are correlated in space, the 

process of aggregation and attenuation by the river network is not as effective at 

filtering out uncertainties.  The deterministic component of the error tends to 
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produce a shift in the value of simulated peak flow up or down, but the width of 

the error band is still determined by the magnitude of the random error component 

and its spatial correlation.   

 In Chapter 5, I investigated the impacts that rainfall resolution and low sampling 

frequency, features inherent in satellite-based rainfall data, have on flood 

prediction.  The spatial and temporal resolution of the rainfall fields has a 

significant impact on simulated peak flow for small scales.  However, this impact 

is also scale dependent and decreases as basin area increases.  At some scales, the 

impact of rainfall spatial resolution disappears.  Our results demonstrate that 

sampling frequency errors are critical for flood prediction since errors are not 

always filtered out by the river network.   

 In Chapter 6, I performed simulations using the real products to evaluate how they 

differ from each other and to assess how these differences propagate though the 

hydrological model.  This exercise demonstrated that even products based on the 

same raw data (weather radar) can provide significantly different results for 

simulated peak flow for small scale basins but that uncertainties tend to decrease 

as basin area increases.  Rainfall satellite products presented large differences 

when compared to weather radar and gauged-based products, and both products 

failed to predict floods for the event evaluated in this study.  The results presented 

in this chapter point to the great need in the hydrological community for the 

correct estimation of rainfall intensity and space-time variability.             

 In Chapter 7, I performed hydrological simulations using various rainfall products 

to evaluate how different they are from each other and to assess how these 

differences propagate though the hydrological model.  I demonstrated that 

significant differences are observed even for products based on the same raw data 

(weather radar or gauge data).  However, in this case, uncertainties are also scale 

dependent and decrease as the basin area increases.  Rainfall satellite products 
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presented large differences when compared to weather radar and gauged-based 

products, and both products (PERSIANN and CMORPH) analyzed in this study 

failed to correctly capture rainfall events over the study area for the analyzed 

events.  I revealed that satellite-based rainfall product uncertainties are not 

systematic: rainfall can be detected but overestimated (normally the case), 

detected and underestimated, not detected, or falsely detected.  A better 

understanding of the causes of these uncertainties is required before I can use this 

data to predict floods accurately.  The results presented in this chapter illustrate 

the challenge of correctly estimating rainfall intensity and space-time variability 

over large areas.           

 In Chapter 8, I presented the preliminary results from a sensitivity analysis to 

assess the impact that biases in the estimation of PE or soil moisture initial 

conditions have on simulated peak flow across scales.  I demonstrated that the 

effect of PE bias on simulated peak flow depends on basin scale and slightly 

increases as basin area increases since this type of error introduces positive or 

negative bias into the estimation of runoff.  The effect also depends on the 

intensity of the rainfall event and decreases as the rainfall intensity increases.  I 

also demonstrated that the sensibility to soil moisture initial conditions is 

probably caused by the effect of the model’s spin-up.  If the main flood event of 

the year occurs at the beginning of the simulation period (March 1st), the effects 

of errors on the definition of the initial soil moisture conditions will be greater 

than if the event occurs at the end of the season. 
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APPENDIX  

NETWORK HYDRAULIC GEOMETRY  

Introduction 

Understanding variation in river hydraulic geometry throughout stream networks 

is essential to solving water- and ecosystem-related problems due to the influence of this 

variation on flow and sediment routing, physical habitats, and channel–floodplain 

interactions (Stewardson, 2005).  Hydraulic geometry (HG) equations were first 

presented by Leopold and Maddock (1953) to describe mean channel properties (water 

surface width W, average depth D, and average velocity V) as a power function of 

discharge (Q).  Since then, these relationships have been widely applied to 

represent/model geomorphological, hydrological, ecological, and water management 

systems (e. g. Hogan and Church, 1989; Rhoads et al., 2003).  

HG relationships can also be used to monitor relevant hydraulic and geometric 

river properties from space, and it has already been demonstrated that average surface 

water width can be accurately estimated from space (Smith, 1997; Stewardson, 2005; 

Ashmore and Sauks, 2006; Smith and Pavelsky, 2008).  Combined with HG 

relationships, these measurements indirectly estimate channel discharge, velocity, and 

geometry, which constitute essential information for hydrological, geomorphologic, and 

ecological models.  Remote sensing information will not replace the need for streamflow 

gauges, since high-resolution remote sensors usually present low temporal sampling rates 

(weeks to months for resolution of 10-30 meters).  However, satellites observe river 

conditions with dense spatial sampling over large areas, providing a type of information 

that cannot be obtained by localized gauge instruments.  Moreover, remote sensing 

systems provide continuous, low cost information with nearly global coverage, even for 

areas that are inaccessible, impoverished, or politically unstable.  
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Currently, different HG formulations are being used and investigated.  At-a-

station HG (AAS-HG) describes hydraulic and flow variations with discharge in a single 

river cross-section.  River reached HG (R-HG) was proposed by Stewardson (2005) and 

attempts to describe mean and variance of hydraulic properties in a river reach, defined as 

being approximately 10-20 channel widths in length.  In this version of HG, short-scale 

variability of natural river morphology, including pool and riffle sequences, are 

integrated into the calculation.  Using the same functional form proposed by Leopold 

(1953) to describe river properties as a function of discharge into a river reach, the author 

concluded that five reach hydraulic variables are sufficient to characterize the gross 

hydraulic conditions along a river reach.  The author also demonstrated that there is 

strong potential to develop empirical models to predict reach hydraulic geometry 

parameters.  However, this version of HG neglects scale effects.  

In this work, I investigate a third formulation called Network HG (N-HG), which 

is shaped by the hypothesis that channel and flow properties are scale dependent and that 

the parameters that describe HG relationships are controlled by physical and climatic 

regional properties as well as by the characteristics of the river network.  N-HG describes 

the relationship between flows and channel properties for rivers located in regions with 

similar characteristics.  N-HG attempts to represent the average processes and properties 

that define river flow and geometry patterns, without focusing on local channel variations 

or specific locations (e.g. bridges and pools).   

In the first part of this study, I demonstrate the scale dependence of the AAS-HG, 

which has already been demonstrated in the literature (Dodov, 2003; Mantilla, 2007) but 

has never been tested using a large dataset including multiple climatic regions.  I 

estimated the AAS-HG parameters for a dataset with more than 18,000 sites covering a 

large range of drainage areas and climatic/physical regions.  I concluded that coefficients 

of the HG relationships are scale dependent, while exponents present a weaker 
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dependency on drainage area.  Motivated by these results, I adopted the N-HG functional 

form proposed by Paik (2004) and Mantilla (2007).  

In the second part of this study, I used the same dataset to estimate N-HG 

parameters for the whole US territory.  I demonstrate how parameters change in space 

and provide evidence for the link between N-HG parameters and physical and 

climatological aspects of the watershed.  Further studies are required to define the 

functional relationship between these watershed properties and N-HG parameters. 

Subsequently, I discuss the application of N-HG for flood simulation.  I first 

present some limitations imposed by the assumptions adopted for the derivation of N-

HG.  I demonstrate the difference between “flood wave velocity” and “water velocity” in 

kinematic models, as it pertains to the model applied in this work.  These differences 

limit the direct use of N-HG parameters estimated from the USGS hydraulic 

measurements for flood routing.  I demonstrate that in order to correctly capture time to 

peak, the empirical parameter has to be corrected by a constant coefficient.  I then 

estimate the N-HG parameters for the study area.   

In the last part of this chapter, I demonstrate peak flow sensibility to N-HG 

parameters.  NH-G relationships represent the variability of river channel and flow 

properties in space (area) and time (discharge).  These properties impose an important 

control on the shape and propagation of flood waves throughout the river network, which 

controls flood generation.  Paik (2004) and Mantilla et al. (2006) demonstrated that 

nonlinearities in flood generation could be explained by river network variability.  Gupta 

(1998) and Mantilla et al. (2006) investigated the effects of different flow dynamics on 

peak flow scaling and found that different flow conditions strongly affect scaling 

parameters.  I demonstrate how NH-G parameters affect peak flow generation across 

different scales and reveal that NH-G plays an important role in flood generation, 

especially for larger scale basins. 
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Data 

This study is based on USGS measurement data, including channel average 

properties (velocity, discharge, water depth, section area, and surface water width) 

surveyed across the US and covering multiple climatic and physiographic regions and 

hydrological conditions.  The survey serves the primary purpose of collecting data for the 

estimation of rating curves.  Data has been collected since 1900, and the adopted 

measurement methods and expected measurement’s uncertainty have changed during this 

period.  To guarantee the use of high quality data, I used only the data that were flagged 

as good or excellent and that were not obtained under clear river conditions.  A total of 

709,400 measurements, for 18,857 different locations ranging in area from 0.016 to 

2,925,460 km2, were used.  

Hirsch and Costa (2004) present a brief description of the measurement methods 

used by the USGS.  Discharge is estimated based on the velocity-area method that 

consists of dividing the river into multiple sections.  Vertical velocity distribution, section 

width, and depth are measured for each section.  Unit discharge is estimated by the mean 

velocity times the cross-section area, and total discharge is the sum of the discharge of 

each section.  Low to medium flows are typically measured by a technician who enters 

the river and wades along a stream’s cross section.  High flows with depths exceeding 3 

feet are usually measured from a bridge near the gauge installation, from a cable car if 

available, or from a boat.  Uncertainties in the estimation of these three parameters affect 

the estimation of channel discharge.  Hirsch and Costa (2004), Stewardson (2005), and 

Harman et al. (2008) used typical uncertainty values specified in the ISO 748 (1997) to 

estimate an average value of expected relative error in the estimation of discharge equal 

to ± 5.7 percent.  Stewardson (2005) and Harman et al. (2008) explored the contribution 

of error to apparent variation in hydraulic geometry parameters estimated from field 

measurements and models.  Castro and Jackson (2001), Sweet (2003), Stewardson 

(2005), Faustini et al. (2009), and Mejia and Reed (2011) concluded that, despite the 
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uncertainties involved, HG parameters estimated from surveys, especially the ones 

including a large discharge range, are more reliable than parameters estimated by 

hydraulic models since models are likely to bias any exponent values. 

USGS flow measurement sites are usually located at well-defined stream cross 

sections and sites with specific characteristics because shallower locations or locations on 

bridges are usually chosen.  I acknowledge that this factor can introduce some bias into 

the estimation of the N-HG parameters (e.g. bridges are usually located in narrower 

sections of the river).  However, the use of this dataset is justified since I focus on 

estimating average properties in a region and consider the main factors that shape these 

properties.  The large amount of high quality data guarantees the estimation of significant 

N-HG parameters.  Other authors have already applied part of this dataset to estimate the 

HG relationship for specific regions (Leopold, 1953; Castro and Jackson, 2001; Sweet, 

2003; Faustini et al., 2009; Mejia and Reed, 2011).  

At-a-station HG and scaling dependence 

AAS-HG hydraulic geometry refers to the power laws relating the channel mean 

velocity V, width W, mean depth D, and section area (S) to discharge Q: V = kQm, W = 

aQb, D = cQf,. and S = dQg.  The dataset previously described was used to estimate AAS-

HG exponents and coefficients in order to investigate whether there is evidence of scale 

dependency.   

I used ordinary log-log least squares regression to estimate the relationships 

between velocity (V), water depth (D), surface water width (W), section area (S), and 

discharge (Does discharge have a letter variable?)using the original formulation proposed 

by Leopold (1953) and Western et al. (1997).  I used sites with more than 50 samples to 

guarantee a reasonable sample size.  This resulted in a total of 5,812 sites and 687,966 

measurements.  I estimated the coefficient of determination (R2) for all sites and 

hydraulic variables.  On average, discharge can explain approximately 58, 62, 76, and 
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87% of the river channel velocity, surface water width, water depth, and area cross 

section variability, respectively.  

The dependence of AAS-HG parameters on the upstream contributing area has 

already been discussed in the literature.  Western et al. (1997) and Dodov and Foufoula-

Georgiou (2004) observed changes in stream shape for single channels and demonstrated 

trends in channel cross-sectional area and depth with distance downstream.  Dodov 

(2004) and Dodov and Foufoula-Georgiou (2004) demonstrated the scaling effects on HG 

parameters and proposed a multi-scaling model to estimate the cross section area and 

velocity for which the coefficients of the AAS- HG are explicit functions of scale.  

Dodov (2004) and Mantilla (2007) provided a physical explanation for the scale 

dependency of HG parameters.  Dodov (2004) hypothesized that the scale dependence of 

HG is a direct consequence of the systematic increase in channel cross sectional 

asymmetry over reaches of increasing scale and tested the hypothesis using observed data 

and a physical model of meandering rivers.  Wooding (1965), Robinson et al. (1995), 

D'Odorico and Rigon (2003), and Mantilla (2007) hypothesized that the inclusion of 

drainage area in HG relationships accounts for scaling effects imposed by self-similar 

river networks and, consequently, physically derived the N-HG relationship for stream 

velocity.   

Figure A.1 presents the relationship between AAS-HG parameters (coefficient 

and exponent) and basin area for the four hydraulic variables considered in this work 

(velocity, water surface width, depth, and cross-section area).  The AAS-HG parameters 

present different levels of scale dependence.  The coefficients for velocity, depth, and 

section area decrease with basin area, while the coefficient for surface water width 

presents the opposite effect.  Exponents present a weak scale dependency, as 

demonstrated by the slope of the fitting lines presented in Figure A.1.  The large spread 

observed in Figure A.1  demonstrates that AAS- HG parameters present a large 

variability that is not explained by the scale dependency.  This variability is the result of 
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physical and climatic features that control channel morphology or of uncertainties in the 

measurements of hydraulic properties.  

Network hydraulic geometry (N-HG) 

Network HG (NHG) describes the relationship between flows and channel 

properties for regions with similar properties.  Combining information for many sites in 

the same river network minimizes the local effects controlling channel local variability 

and provides information about the large-scale processes controlling river and flow 

properties.  N-HG hydraulic geometry refers to the power laws governing the channel’s 

mean velocity V, width W, and mean depth D to discharge Q and basin drainage area A: 

V = voQλ1 Aλ2, W = woQλ3 Aλ4 , and D = doQλ5 Aλ6.  The dataset previously described was 

used to estimate N-HG parameters: exponents for area and discharge as well as the 

coefficient.  Assuming that N-HG is a property of the river network, the sites were 

grouped according to hydrological units (HU6), and the parameters for the sub-group 

were calculated if at least 3 sites (and, consequently, three different drainage areas) and 

20 measurements were available.  

Figure A.2 presents the geographic distribution of N-HG parameters.  In the top 

of the figure, three relevant physical and climatologic maps are presented: (1) average 

terrain slope, (2) soil hydrological group, and (3) average annual precipitation.  These 

maps were chosen to demonstrate some of the expected factors controlling hydraulic 

properties.  It is expected that a combination of these factors, and likely others not 

included in this analyses, shapes the values of N-HG parameters in a certain region.  

However, the comparison of the thematic maps with N-HG parameters maps provides 

insight into the dominant aspects for each hydraulic variable.  Velocity parameters are 

mainly controlled by terrain slope.  I observe that regions with high slope (e.g. the 

Appalachian Highlands and Pacific Mountain System) present high coefficients and 

discharge exponents but low (negative) area exponents.  The opposite pattern is observed 
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for flatter regions (e.g. the Atlantic Plain).  Soil properties seem to exert an important 

control on water surface width.  In this case, high coefficients and discharge exponents, 

and low area coefficients, occur in regions that present soils with high runoff potential 

(red - Group D, e.g. the Atlantic Plain and Intermontane Plateaus).  The opposite effects 

are observed in regions that present soil with high infiltration potential (green - Group A, 

e.g. the Appalachian Highlands).  Climatology, grossly represented in this study by the 

average annual precipitation, seems to impose a control on water depth parameters.  

Humid regions present higher coefficients and discharge exponents, while area exponents 

tend to be negative or close to zero.  Very dry regions present low coefficients and 

discharge exponents, while the area exponent tends to be close to zero or positive.   

Application for flood simulation 

Flood wave velocity versus water velocity  

Flood routing is an essential component of hydrological models.  In an attempt to 

develop a calibration-free hydrological model, I have selected a flood routing method 

whose parameters could be directly obtained through data.  I tried to avoid formulations 

that are computationally expensive, since I adopt a very fine discretization of the 

landscape and the number of links in the network is large.   

While I apply the complete form of the Saint Venant Equations for flood routing, 

the solution to these equations requires the implementation of numerical methods to solve 

partial differential equations, which is computationally expensive.  Hydrological models 

usually adopt simplified versions of the Saint Venant equations, which are simpler and 

require less time-consuming numerical solutions.  The convection-diffusion equation 

neglects the effects of acceleration, while the kinematic-wave equations neglect the 

effects of acceleration and pressure-force.  In the last case, it is assumed that the depth of 

the flow does not change in the channel.  Therefore, the kinematic term refers to the flow 
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caused by mass and force only, without accelerations due to changes in depth and 

velocity.  

Chezy and Manning’s equations, which are widely applied in hydrology and 

hydraulics, are special cases of the kinematic wave formulation.  One difficulty in 

applying these equations is the need to define roughness coefficients and slopes for each 

link.  The slope of a link (with an approximate length of 200 m) cannot be accurately 

estimated based on digital elevation models because they do not provide elevation of the 

channel bottom.  The estimation of the roughness coefficients can theoretically be 

determined based on field investigation.  However, these coefficients change 

considerably from site to site, and for the same site they also change with flow depth.  

Due to this difficulty, the roughness coefficient is usually calibrated based on observed 

streamflow data.  Therefore, this formulation is not appropriate for our calibration-free 

approach. 

The N-HG formulation is also a special case of the kinematic wave equation since 

one of the assumptions used by Mantilla (2007) to derive this equation is that channel 

depth does not change across the link.  The advantage of this formulation is that 

parameters can be obtained through low cost field campaigns that measure flow velocity 

and discharge throughout the river network.  These measurements can be obtained at any 

time, so there is no need for historical records.   

The kinematic assumption imposes some limitations on the direct use of the 

empirically estimated parameters for flood simulation.  By definition, the speed that the 

water moves downstream (flood wave velocity or celerity) is different from the velocity 

of the water at a point.  Water velocity is equal to v=Q/A, while the celerity or kinematic 

velocity is defined by c=     ⁄ .  This means that the flood wave travels at a speed 

determined by the incremental change in discharge with respect to changes in the channel 

area.  Field campaigns measure the velocity of the water, while the model propagates the 

flood wave based on celerity.  Therefore, I need to correct the velocity obtained by the 
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USGS measurements by a coefficient that is the inverse of the kinematic ratio k=c/v.  

This ratio is defined by: 
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                     Equation 1 

If I assume that the width of a link is constant, the cross-section area is equal to 

the average depth times the width: 

    
 

 

  

  
  Equation 2 

Based on hydraulic similarity, Mantilla (2007) defined velocity in a link as: 

     
     Equation 3 

Where    is a friction factor, d is the water depth, and   is the link slope.  If I 

substitute this equation in Equation 4-2, I can calculate the kinematic ratio k: 

    
 

 

    
   

  
    

 

 
   

                  Equation 4 

Where m defines the rate at which velocity changes with water depth.  This value 

can also be obtained by field campaign measurements.  In many hydraulic models (e.g. 

Manning), m is equal to 2/3, which results in a final k=5/3.  Therefore, to correctly 

estimate celerity in the flood routing model, I need to multiply the velocity estimated 

based on USGS measurements (v) by 3/5 (0.6).   

Parameter estimation for real events simulation  

I estimated the parameters of the N-HG relationships for the Cedar River, Iowa 

River, and Turkey River basins.  Figure A.6 presents the observed versus predicted 

velocity based on the N-HG equation for velocity and the parameters estimated based on 

the least equation regression.  To estimate these parameters, I use an extensive search 

method and minimize the total residue.  I opted not to use least square regression in this 

case since there are few measurements for high velocity and a large number of 

measurements for low velocity.  The measurements for high velocities would dominate 

the regression and bias the coefficients.  I opted to minimize the relative difference 
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between observed and simulated velocity.  For future research, a comprehensive 

evaluation of different regression methods is recommended to determine which methods 

would better apply to the type of available dataset.     

The estimated parameters, shown in Figure A.6, are corrected by the coefficient 

described in the previous section and used for the simulation of real events.  Figure A.6 

also shows the residue (observed-predicted) as a function of discharge and basin drainage 

area.  Residues are larger for high values of discharge.  The effects of this bias for large 

discharge warrant future research.  However, the parameters estimated based on the 

method presented here successfully predict time to peak for the 2008 and 2004 flood 

events.   

Effects of N-HG on the scaling properties of flood 

The dominant processes that control the hydrological basin response are scale 

dependent.  Transport through the river network mainly governs the hydrological 

response of medium to large-scale basins (Wooding, 1965; Robinson et al., 1995; 

D'Odorico and Rigon, 2003), while rainfall-runoff processes dominate the response of 

small-scale basins.  Hydrological models that attempt to accurately simulate hydrological 

systems should include a realistic representation of both processes at the scales at which 

they occur in nature.  N-HG relationships provide an important tool to properly represent 

transport of flow through the river network and are able to describe non-linearities in the 

transport processes and their variability, in space as a function of drainage area and in 

time as a function of channel discharge.  

In this section, I present a case study developed for the Cedar River basin 

(~17,000km2) to evaluate the effects of N-HG parameters and parameter uncertainties on 

the prediction of peak flow (    scaling.  Many studies have demonstrated that peak 

flows are related to basin drainage area through a power-law (       , characterizing 

a scale-invariance process.  The parameters that describe this relationship are the fitted 
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line intercept ( ), the exponent (b), and the scale break if present (Stewardson, 2005; 

Mandapaka et al., 2009).  The development of the geophysical theory of floods depends 

upon an understanding of how peak flow scaling parameters are affected by river flow 

dynamics. 

In this study, I implement a simulation to investigate how HG affects peak flow 

scaling slopes and intercepts using a simple version of the hydrological model described 

in Chapter 2.  Spatially uniform rainfall was applied to the basin, and infiltration (runoff 

coefficient equal to 1) was considered equal to zero in all cases.  The total volume of 

precipitation added to the basin was equal to 60mm, and this volume was applied to the 

basin, considering the following rain event intensities and durations: 30mm/h during 120 

minutes (low intensity – column 1 of Figure A.3) 60mm/h during 60 minutes (medium 

intensity – column 2 of Figure A.3), and 240mm/h during 15minutes (high intensity – 

column 3 of Figure A.3).  I used empirically-estimated N-HG parameters to simulate 

channel routing velocities and then varied these parameters and analyzed their effects on 

peak flow.  

Figure A.3 presents the scaling of peak flow and the relative difference between 

simulated peak flow obtained with the true N-HG parameters (empirically estimated) and 

the modified ones.  The plots allow us to evaluate the results for multiple basin scales.  

As stated by Mantilla, the coefficient vo is a random variable.  In the first panel, I add 

variability to the velocity coefficient through the definition of an average value (equal to 

0.9) and a standard deviation (σ=0.15, also data-based, and 0.30).  These values are used 

to generate random values of the coefficient for each link in the river network based on a 

normal distribution.  Peak flow values obtained using these scenarios are compared to 

peak flow values obtained with the coefficient equal to 0.9 and σ=0.0.  Larger errors are 

expected for more intense events (high intensity and short duration) with errors on the 

order of ±10% for σ=0.15 and ±25% for σ=0.15.  However, velocity coefficient 

variability does not affect the statistical scaling of peak flow.  These results demonstrate 
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that the accurate prediction of peak flow can be obtained if the average patterns of flow 

propagation are known.  

Figure A.4 and Figure A.5 present the results for different values of discharge and 

area exponents, respectively.  Simulated peak flow values obtained based on the 

empirically estimated parameter value (γ1=0.25 and γ2=-0.15) were compared to the ones 

obtained with discharge exponents equal to 0.20 and 0.30 and area exponents equal to -

0.1 and -0.2.  Results demonstrate that the effects of N-HG exponents on peak flow 

scaling are scale dependent and increase as basin drainage area increases.  In both cases, 

peak flow changed for basin areas larger than 10 km2.  This result is expected since the 

hydrological response of large scale basins are dominated by flow transport processes, 

while the response of small scales basins is controlled by hillslope processes.  The 

position of the scale break is also affected and moves toward smaller scales for higher 

areasor discharge exponents.  The effects of N-HG parameters are more intense for 

precipitation events of higher intensity and lower duration.   

Conclusions 

In this chapter, I described the different formulations for the Hydraulic Geometry 

relationship and used a large dataset of hydraulic measurements covering a wide range of 

drainage areas and climatic/physical regions to demonstrate the scale dependency of 

hydraulic geometry parameters.  I then used the same dataset to estimate N-HG 

parameters for the whole US territory and to provide insight into the relationship between 

N-HG parameters and the physical/climatological/topological characteristics of the area.  

More detailed studies are required to fully comprehend the functional form of these 

relationships and to derive  empirical models to estimate N-HG parameters based on 

physical properties of the basin area.    

I then discuss the application of N-HG equations for flood simulations.  The 

derivation of N-HG was based on simplified assumptions that limit the direct application 
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of the parameters obtained using USGS measurement data for flood simulation.  The 

main problem is that I used USGS measurements to estimate water velocity as Q/A, 

whereas the model requires the specification of the flood wave velocity that is defined as 

c=     ⁄ .  I demonstrate that a constant coefficient can be used to correct the 

empirically based parameters, and I estimate this coefficient based on the relationship 

between velocity and water depth.  I obtain the results presented in Chapter 3 using the 

empirically-estimated parameters that are corrected using the constant coefficient defined 

in this chapter.  Further studies are necessary to ascertain the validity of the constant 

correction coefficient applied in this study, including theoretical studies that demonstrate 

the effects of the simplifications on flow propagation or simulation studies that apply the 

coefficients derived here to other study areas.  

In the last part of this study, I demonstrated how channel morphology affects peak 

flows across scales.  Results show that N-HG parameters play an important role in flood 

generation, especially for larger scales basins.  First, I investigated the effects of 

coefficient variability on peak flow scaling.  Some error can be introduced into peak flow 

simulation due to the lack of consideration of local variability.  However, it does not 

affect the parameters of the scaling of peak flow power law relationship.  Then, I 

investigated peak flow sensitivity to the area and discharge N-HG exponents and 

demonstrated that the effects of the N-HG exponents on peak flow scaling are scale 

dependent and increase as basin drainage area increases.  This is expected since channel 

transport dominates the response of large-scale basins.  Given the same precipitation 

volume, sensitivity also increases as the intensity of the rainfall event increases (duration 

decreases).  
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Figure A.1. Relationship between at-a-station HG parameters (coefficient and exponent) 
and basin area for the four hydraulic variables considered in this work.  
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Figure A.2. N-HG parameters estimated for the US.  The top plots are reference maps 
that provide insight into the dominant processes that control parameter 
variability.  The second, third, and fourth lines present the parameters for 
velocity, water surface width, and water depth, respectively.  The coefficient, 
discharge exponent, and area exponent of the N-HG relationships are 
presented in the first, second, and third columns, respectively. 
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Figure A.3. Scaling of peak flow for different sets of N-HG parameters and rainfall 
events’ intensity and duration (rainfall volume=60mm): variability was added 
to the velocity coefficient through the definition of an average value (equal to 
0.9) and a standard deviation.  
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Figure A.4. Scaling of peak flow for different sets of N-HG parameters and rainfall 
events’ intensity and duration (rainfall volume=60mm):  results for different 
values of the discharge exponent.  
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Figure A.5. Scaling of peak flow for different sets of N-HG parameters and rainfall 
events’ intensity and duration (rainfall volume=60mm): results for different 
values of the area exponent 
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Figure A.6. N-HG velocity parameters for the Iowa River, Cedar River, and Turkey River 
basins.  
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